🔍 Code Extractor

Browse Components

Showing 20 of 2143 components

  • function dimension_sort

    Sorts an ordered dictionary by specified dimension keys, supporting both standard Python tuple sorting and categorical ordering for dimensions with predefined values.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1239-1258

    sorting categorical-data multi-dimensional data-processing dimensions
  • function merge_dimensions

    Merges multiple lists of Dimension objects by combining their values while preserving unique dimensions and maintaining order of first appearance.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1213-1236

    dimension-merging data-consolidation holoviews metadata-processing deduplication
  • function python2sort

    A sorting function that mimics Python 2's behavior of grouping incomparable types separately and sorting within each group, rather than raising a TypeError when comparing incompatible types.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1194-1210

    sorting python2-compatibility mixed-types heterogeneous-data type-safety
  • function match_spec

    Matches an element's type, group, and label against a hierarchical specification dictionary, returning the most specific matching value.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1177-1191

    matching specification hierarchical-lookup configuration element-matching
  • function unique_array

    Returns an array of unique values from the input array while preserving the original order of first occurrence.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1147-1174

    array-processing deduplication unique-values data-cleaning order-preserving
  • function unique_zip

    Returns a unique list of tuples created by zipping multiple iterables together, removing any duplicate tuples while preserving order.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1140-1144

    data-processing itertools zip unique deduplication
  • function lzip

    A convenience wrapper around Python's built-in zip function that returns a list instead of an iterator.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1133-1137

    utility list zip iteration data-processing
  • function unique_iterator

    A generator function that yields unique elements from an input sequence in order of first appearance, filtering out duplicates.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1121-1130

    iterator generator deduplication unique sequence-processing
  • function int_to_roman

    Converts an integer between 1 and 3999 to its Roman numeral string representation.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1106-1118

    conversion roman-numerals integer string-formatting mathematical
  • function int_to_alpha

    Converts a non-negative integer to an Excel-style alphabetic column label (A, B, C, ..., Z, AA, AB, ..., ZZ, AAA, etc.).

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1085-1103

    string-conversion alphabetic-labels excel-columns base-26 spreadsheet
  • function max_extents

    Computes the maximal extent (bounding box) from a list of extent tuples, supporting both 2D (4-tuples) and 3D (6-tuples) coordinate systems with special handling for datetime and string values.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1045-1082

    spatial-analysis bounding-box extent-calculation 2D 3D
  • function dimension_range

    Computes the effective range along a dimension by combining data bounds with soft and hard range constraints, optionally applying padding and logarithmic scaling.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 1025-1042

    range-computation data-visualization axis-limits plotting dimension-scaling
  • function range_pad

    Pads a numeric or datetime range by a specified fraction of the interval, with optional logarithmic scaling for positive numeric values.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 995-1022

    range padding numeric datetime logarithmic
  • function max_range

    Computes the maximal lower and upper bounds from a list of range tuples, handling various data types including numeric, datetime, and string values.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 944-992

    data-processing range-computation bounds aggregation datetime-handling
  • function find_range

    Robustly computes the minimum and maximum values from a collection, with fallback mechanisms for edge cases and support for extending the range with soft bounds.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 920-941

    data-processing statistics range-finding min-max numpy
  • function find_minmax

    Computes the minimum of the first elements and maximum of the second elements from two tuples of numeric values, handling NaN values gracefully.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 906-917

    numeric-range min-max bounds-calculation nan-handling data-aggregation
  • function isdatetime

    Determines whether a given value (array or scalar) is a recognized datetime type, checking both NumPy datetime64 arrays and Python datetime objects.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 894-903

    datetime type-checking validation numpy temporal-data
  • function isfinite

    Extended version of numpy.isfinite that handles additional data types including None, strings, datetime objects, masked arrays, and dask arrays.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 853-891

    validation data-processing numpy pandas dask
  • function isnat

    Checks if a value is NaT (Not-a-Time), a special marker for missing or invalid datetime/timedelta values in NumPy and pandas.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 835-850

    datetime timedelta NaT missing-values temporal-data
  • function asarray

    Converts array-like objects (lists, pandas Series, objects with __array__ method) to NumPy ndarray format with optional strict validation.

    File: /tf/active/vicechatdev/patches/util.py | Lines: 815-830

    array-conversion numpy data-processing type-conversion validation