function cache_result
A decorator factory that creates a caching decorator for function results with a configurable time-to-live (TTL). Currently a placeholder implementation that passes through function calls without actual caching.
/tf/active/vicechatdev/CDocs/controllers/__init__.py
215 - 231
simple
Purpose
This decorator is designed to cache function results to improve performance by avoiding redundant computations. It accepts a TTL parameter to control how long cached results remain valid. The current implementation is a skeleton that preserves function metadata using functools.wraps but does not implement actual caching logic. It serves as a framework for future caching implementation, possibly using Redis, memcached, or in-memory dictionaries.
Source Code
def cache_result(ttl=300):
"""
Decorator to cache function results.
This is a placeholder for future implementation.
Args:
ttl: Time to live for cached result (seconds)
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Future: Check cache and return cached result if available
result = func(*args, **kwargs)
# Future: Store result in cache
return result
return wrapper
return decorator
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
ttl |
- | 300 | positional_or_keyword |
Parameter Details
ttl: Time-to-live in seconds for the cached result. Defaults to 300 seconds (5 minutes). This parameter will control how long a cached result is considered valid before the function needs to be re-executed. Currently not enforced as caching logic is not implemented.
Return Value
Returns a decorator function that wraps the target function. The decorator preserves the original function's signature and metadata while adding caching capability (when implemented). The wrapped function returns the same value as the original function would return.
Dependencies
functools
Required Imports
from functools import wraps
Usage Example
@cache_result(ttl=600)
def expensive_computation(x, y):
"""Simulate an expensive operation."""
import time
time.sleep(2)
return x * y + x ** y
# First call executes the function
result1 = expensive_computation(3, 4)
print(f"Result: {result1}") # Takes ~2 seconds
# Second call would use cache (when implemented)
result2 = expensive_computation(3, 4)
print(f"Cached result: {result2}") # Would be instant with caching
# Using default TTL of 300 seconds
@cache_result()
def fetch_user_data(user_id):
return {"id": user_id, "name": "John Doe"}
user = fetch_user_data(123)
Best Practices
- This is currently a placeholder implementation - actual caching logic needs to be implemented before production use
- When implementing, ensure thread-safety if used in multi-threaded environments
- Consider using hashable arguments only, or implement custom key generation for complex objects
- Be cautious with caching functions that have side effects or depend on external state
- Choose appropriate TTL values based on data volatility - shorter for frequently changing data, longer for stable data
- Consider memory implications when caching large result sets
- Future implementation should handle cache invalidation and cleanup of expired entries
- Document which functions are cached to avoid confusion about stale data
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function guard_execution 50.5% similar
-
function add_cache_headers 48.1% similar
-
function add_cache_headers_v1 46.6% similar
-
function get_cache_buster 45.2% similar
-
function inject_cache_buster 44.6% similar