function create_dbo_flocktypes
Creates a new node of type dbo_FlockTypes in a Neo4j graph database with the specified properties and returns the created node.
/tf/active/vicechatdev/neo4j_schema/neo4j_python_snippets.py
829 - 838
simple
Purpose
This function is designed to insert a new dbo_FlockTypes node into a Neo4j graph database. It dynamically constructs a Cypher CREATE query based on the provided properties dictionary, executes the query using a run_query helper function, and returns the newly created node. This is useful for managing flock type entities in a graph database schema, likely part of a larger application dealing with animal or bird flock management systems.
Source Code
def create_dbo_flocktypes(properties):
"""Create a new dbo_FlockTypes node"""
props_list = ', '.join([f"n.{prop} = ${prop}" for prop in properties.keys()])
query = f"""
CREATE (n:dbo_FlockTypes)
SET {props_list}
RETURN n
"""
result = run_query(query, properties)
return result[0] if result else None
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
properties |
- | - | positional_or_keyword |
Parameter Details
properties: A dictionary containing key-value pairs representing the properties to be set on the new dbo_FlockTypes node. Keys should be valid property names (strings) and values can be any data type supported by Neo4j (strings, numbers, booleans, lists, etc.). Example: {'name': 'Chickens', 'max_size': 100, 'is_active': True}
Return Value
Returns the first element from the query result (the created node object) if the query execution is successful and returns results. Returns None if the query returns no results or fails. The returned node object typically contains all properties set during creation along with Neo4j internal identifiers.
Dependencies
neo4j
Required Imports
from neo4j import GraphDatabase
Usage Example
# Assuming run_query function is defined and Neo4j connection is configured
# Example run_query implementation:
# from neo4j import GraphDatabase
# driver = GraphDatabase.driver('bolt://localhost:7687', auth=('neo4j', 'password'))
# def run_query(query, params):
# with driver.session() as session:
# result = session.run(query, params)
# return [record['n'] for record in result]
# Create a new flock type
flock_properties = {
'name': 'Laying Hens',
'max_capacity': 500,
'min_capacity': 50,
'is_active': True,
'description': 'Flock type for egg-laying chickens'
}
new_flock_type = create_dbo_flocktypes(flock_properties)
if new_flock_type:
print(f'Successfully created flock type: {new_flock_type}')
else:
print('Failed to create flock type')
Best Practices
- Ensure the properties dictionary does not contain keys with special characters that could break the Cypher query
- Validate and sanitize input properties before passing to this function to prevent Cypher injection attacks
- The function relies on parameterized queries which is good for security, but ensure run_query properly implements parameter binding
- Handle the None return value appropriately in calling code to detect creation failures
- Consider adding error handling and logging within this function for production use
- Ensure the run_query function properly manages database connections and sessions
- Be aware that this function does not check for duplicate nodes before creation - consider adding uniqueness constraints in Neo4j or checking for existing nodes first
- The dynamic query construction using f-strings for property names is safe here since it only uses dictionary keys, but be cautious with user input
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function create_dbo_flocks 89.9% similar
-
function create_references_flocktypes_relationship_v2 79.3% similar
-
function get_dbo_flocktypes_by_id 78.4% similar
-
function create_references_flocktypes_relationship 77.8% similar
-
function create_references_flocktypes_relationship_v1 76.9% similar