function get_lims_samples_with_references_flocks_dbo_flocks
Queries a Neo4j graph database to retrieve dbo_Flocks nodes that are connected to a specific LIMS_Samples node through a REFERENCES_FLOCKS relationship.
/tf/active/vicechatdev/neo4j_schema/neo4j_python_snippets.py
1513 - 1520
simple
Purpose
This function is designed to traverse a graph database relationship between laboratory information management system (LIMS) samples and flock records. It retrieves flock information associated with a given sample ID, which is useful for tracking biological samples back to their source flocks in agricultural or research contexts. The function supports pagination through a configurable limit parameter.
Source Code
def get_lims_samples_with_references_flocks_dbo_flocks(source_id, limit=100):
"""Get dbo_Flocks nodes connected to a LIMS_Samples via REFERENCES_FLOCKS"""
query = """
MATCH (source:LIMS_Samples {id: $source_id})-[r:REFERENCES_FLOCKS]->(target:dbo_Flocks)
RETURN target
LIMIT $limit
"""
return run_query(query, {"source_id": source_id, "limit": limit})
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
source_id |
- | - | positional_or_keyword |
limit |
- | 100 | positional_or_keyword |
Parameter Details
source_id: The unique identifier of the LIMS_Samples node to query. This should be a string or value that matches the 'id' property of a LIMS_Samples node in the Neo4j database.
limit: Maximum number of dbo_Flocks nodes to return. Defaults to 100. This parameter controls pagination and prevents returning excessively large result sets. Must be a positive integer.
Return Value
Returns the result of the run_query function, which typically contains a list or collection of dbo_Flocks nodes (target nodes) that match the query criteria. The exact return type depends on the implementation of run_query, but it likely returns a list of dictionaries or Neo4j Record objects containing the properties of the matched dbo_Flocks nodes. Returns an empty collection if no matching relationships are found.
Dependencies
neo4j
Required Imports
from neo4j import GraphDatabase
Usage Example
# Assuming run_query is defined and Neo4j is configured
# Example run_query implementation:
from neo4j import GraphDatabase
driver = GraphDatabase.driver('bolt://localhost:7687', auth=('neo4j', 'password'))
def run_query(query, params):
with driver.session() as session:
result = session.run(query, params)
return [record['target'] for record in result]
# Use the function
sample_id = 'SAMPLE_12345'
flocks = get_lims_samples_with_references_flocks_dbo_flocks(sample_id, limit=50)
# Process results
for flock in flocks:
print(f"Flock ID: {flock['id']}, Name: {flock.get('name', 'N/A')}")
Best Practices
- Ensure the source_id parameter matches the exact format and type stored in the Neo4j database
- Use appropriate limit values to avoid performance issues with large datasets
- Handle cases where no relationships exist (empty result set) in calling code
- Consider adding error handling for database connection failures
- Validate that the run_query function properly closes database connections to prevent resource leaks
- Consider adding indexes on the LIMS_Samples.id property in Neo4j for better query performance
- Be aware that this function depends on the external run_query function which must be properly implemented
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function create_references_flocks_relationship 84.7% similar
-
function get_lims_sampletestresults_with_references_samples_lims_samples 77.9% similar
-
function get_dbo_flocks_with_references_flocktypes_dbo_flocktypes 77.3% similar
-
function get_lims_samples_with_references_requests_lims_requests 76.4% similar
-
function get_dbo_interventionprotocolflocks_with_references_flocks_dbo_flocks 76.2% similar