function parse_datetime_v1
Converts various date representations (string, integer, pandas Timestamp) into a numpy datetime64 object using pandas datetime parsing capabilities.
/tf/active/vicechatdev/patches/util.py
2085 - 2091
simple
Purpose
This function provides a unified interface for parsing different date formats into a standardized numpy datetime64 format. It leverages pandas' flexible date parsing to handle strings (like '2023-01-15', 'Jan 15 2023'), integers (timestamps), and pandas Timestamp objects, converting them all to numpy's datetime64 type for consistent datetime handling across an application.
Source Code
def parse_datetime(date):
"""
Parses dates specified as string or integer or pandas Timestamp
"""
if pd is None:
raise ImportError('Parsing dates from strings requires pandas')
return pd.to_datetime(date).to_datetime64()
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
date |
- | - | positional_or_keyword |
Parameter Details
date: The date to be parsed. Can be a string representation of a date (e.g., '2023-01-15', 'January 15, 2023'), an integer timestamp (Unix epoch time), or a pandas Timestamp object. The function relies on pandas.to_datetime() for parsing, so any format supported by that function is acceptable.
Return Value
Returns a numpy datetime64 object representing the parsed date. This is a numpy scalar datetime type that provides efficient storage and operations for datetime values. The specific resolution (e.g., datetime64[ns] for nanoseconds) depends on pandas' default behavior.
Dependencies
pandasnumpy
Required Imports
import pandas as pd
Conditional/Optional Imports
These imports are only needed under specific conditions:
import pandas as pd
Condition: Required for all uses of this function. The function will raise ImportError if pandas is not available.
Required (conditional)Usage Example
import pandas as pd
import numpy as np
def parse_datetime(date):
if pd is None:
raise ImportError('Parsing dates from strings requires pandas')
return pd.to_datetime(date).to_datetime64()
# Example 1: Parse string date
date_str = '2023-01-15'
result1 = parse_datetime(date_str)
print(result1) # Output: 2023-01-15T00:00:00.000000000
# Example 2: Parse integer timestamp (seconds since epoch)
timestamp = 1673740800
result2 = parse_datetime(timestamp)
print(result2)
# Example 3: Parse pandas Timestamp
import pandas as pd
ts = pd.Timestamp('2023-06-20 14:30:00')
result3 = parse_datetime(ts)
print(result3) # Output: 2023-06-20T14:30:00.000000000
# Example 4: Parse various string formats
dates = ['2023-01-15', 'Jan 15 2023', '15/01/2023']
for date in dates:
parsed = parse_datetime(date)
print(f'{date} -> {parsed}')
Best Practices
- Always ensure pandas is installed before calling this function, as it will raise an ImportError if pandas is not available
- Be aware that the function converts to numpy datetime64, which has nanosecond precision by default and may have limitations for dates far in the past or future
- When parsing string dates, ambiguous formats (like '01/02/2023') may be interpreted differently based on pandas' default locale settings
- Consider wrapping calls to this function in try-except blocks to handle parsing errors for invalid date strings
- The function does not preserve timezone information explicitly; timezone-aware timestamps will be converted based on pandas' default behavior
- For large-scale date parsing operations, consider using pandas.to_datetime() directly on arrays/series for better performance
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function dt_to_int 65.8% similar
-
function dt64_to_dt 62.3% similar
-
function parse_datetime_selection 61.8% similar
-
function parse_datetime 60.6% similar
-
function isdatetime 57.2% similar