class SummarizationModel
A Pydantic data model class that defines the configuration schema for a text summarization model, including model name, token limits, and temperature settings.
/tf/active/vicechatdev/chromadb-cleanup/src/summarization/models.py
3 - 6
simple
Purpose
This class serves as a data validation and serialization model for summarization model configurations. It leverages Pydantic's BaseModel to provide automatic validation, type checking, and serialization/deserialization capabilities for summarization model parameters. It's typically used to configure and validate settings before passing them to an actual summarization API or model.
Source Code
class SummarizationModel(BaseModel):
model_name: str
max_tokens: int
temperature: float
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
bases |
BaseModel | - |
Parameter Details
model_name: String identifier for the summarization model to be used (e.g., 'gpt-3.5-turbo', 'claude-2'). This specifies which AI model will perform the summarization task.
max_tokens: Integer value representing the maximum number of tokens the model should generate in the summary. Controls the length of the output summary.
temperature: Float value (typically between 0.0 and 2.0) that controls the randomness of the model's output. Lower values (closer to 0) make output more deterministic and focused, while higher values increase creativity and randomness.
Return Value
Instantiation returns a SummarizationModel object with validated attributes. The class itself doesn't have explicit return methods beyond Pydantic's built-in methods like dict(), json(), which return dictionary and JSON string representations respectively.
Class Interface
Methods
__init__(model_name: str, max_tokens: int, temperature: float)
Purpose: Constructor that initializes a SummarizationModel instance with validated parameters
Parameters:
model_name: String identifier for the summarization modelmax_tokens: Maximum number of tokens for the summary outputtemperature: Randomness control parameter for model output
Returns: A validated SummarizationModel instance
dict() -> dict
Purpose: Inherited from BaseModel. Converts the model instance to a dictionary representation
Returns: Dictionary containing all model fields and their values
json() -> str
Purpose: Inherited from BaseModel. Serializes the model instance to a JSON string
Returns: JSON string representation of the model
model_dump() -> dict
Purpose: Inherited from BaseModel (Pydantic v2). Converts the model to a dictionary
Returns: Dictionary representation of the model
model_dump_json() -> str
Purpose: Inherited from BaseModel (Pydantic v2). Serializes the model to JSON
Returns: JSON string representation
Attributes
| Name | Type | Description | Scope |
|---|---|---|---|
model_name |
str | The name/identifier of the summarization model to use | instance |
max_tokens |
int | Maximum number of tokens allowed in the generated summary | instance |
temperature |
float | Temperature parameter controlling output randomness (typically 0.0-2.0) | instance |
Dependencies
pydantic
Required Imports
from pydantic import BaseModel
Usage Example
from pydantic import BaseModel
class SummarizationModel(BaseModel):
model_name: str
max_tokens: int
temperature: float
# Instantiate with valid parameters
config = SummarizationModel(
model_name="gpt-3.5-turbo",
max_tokens=150,
temperature=0.7
)
# Access attributes
print(config.model_name) # Output: gpt-3.5-turbo
print(config.max_tokens) # Output: 150
# Convert to dictionary
config_dict = config.dict()
print(config_dict) # Output: {'model_name': 'gpt-3.5-turbo', 'max_tokens': 150, 'temperature': 0.7}
# Convert to JSON
config_json = config.json()
print(config_json) # Output: JSON string
# Create from dictionary
config2 = SummarizationModel(**{'model_name': 'claude-2', 'max_tokens': 200, 'temperature': 0.5})
Best Practices
- Always provide all required fields (model_name, max_tokens, temperature) when instantiating the class to avoid Pydantic validation errors.
- Use appropriate temperature values (typically 0.0-2.0) based on your use case: lower for factual summaries, higher for creative ones.
- Set max_tokens based on your desired summary length and the model's capabilities.
- Leverage Pydantic's validation by catching ValidationError exceptions when creating instances with invalid data.
- Use the .dict() method to convert the model to a dictionary for passing to API calls.
- Consider adding Field validators from Pydantic if you need to enforce constraints (e.g., temperature range 0.0-2.0).
- This class is immutable by default in Pydantic v2; use model_copy() to create modified versions.
- The class is stateless and thread-safe, making it suitable for concurrent usage.
Similar Components
AI-powered semantic similarity - components with related functionality:
-
class SummarizationConfig 76.3% similar
-
function create_summary 56.7% similar
-
class BaseModel 52.3% similar
-
class AnalysisConfiguration 47.0% similar
-
function summarize_text 46.1% similar