🔍 Code Extractor

function load_data

Maturity: 42

Loads a CSV dataset from a specified filepath using pandas, with fallback to creating sample data if the file is not found.

File:
/tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
Lines:
24 - 34
Complexity:
simple

Purpose

This function serves as a data loading utility that attempts to read a CSV file and provides informative feedback about the dataset's structure (shape and columns). It includes error handling to gracefully manage missing files by calling a fallback function 'create_sample_data()' to generate sample data instead of failing.

Source Code

def load_data(filepath='data.csv'):
    """Load the dataset"""
    try:
        df = pd.read_csv(filepath)
        print("Dataset loaded successfully!")
        print(f"Shape: {df.shape}")
        print(f"\nColumns: {df.columns.tolist()}")
        return df
    except FileNotFoundError:
        print("Error: data.csv not found. Creating sample dataset...")
        return create_sample_data()

Parameters

Name Type Default Kind
filepath - 'data.csv' positional_or_keyword

Parameter Details

filepath: String path to the CSV file to be loaded. Defaults to 'data.csv' in the current working directory. Can be an absolute or relative path. Expected to point to a valid CSV file readable by pandas.read_csv().

Return Value

Returns a pandas DataFrame object containing the loaded dataset. If the specified file exists, returns the DataFrame created from the CSV file. If the file is not found (FileNotFoundError), returns the result of create_sample_data() function (assumed to also return a DataFrame). The DataFrame structure depends on the CSV content or the sample data generation logic.

Dependencies

  • pandas

Required Imports

import pandas as pd

Usage Example

import pandas as pd

# Assuming create_sample_data() is defined
def create_sample_data():
    return pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

# Load data from default location
df = load_data()

# Load data from custom filepath
df = load_data(filepath='path/to/mydata.csv')

# Access the loaded data
print(df.head())

Best Practices

  • Ensure the 'create_sample_data()' function is defined before calling load_data() to avoid NameError when file is not found
  • Use absolute paths or ensure correct working directory when specifying custom filepaths
  • Consider adding more specific exception handling for other pandas.read_csv() errors (e.g., parsing errors, encoding issues)
  • The function prints to stdout which may not be ideal for production environments; consider using logging instead
  • Validate the returned DataFrame structure matches expected schema before processing
  • Consider adding parameters for pandas.read_csv() options (encoding, delimiter, etc.) for more flexibility

Similar Components

AI-powered semantic similarity - components with related functionality:

  • function load_dataset 86.9% similar

    Loads a CSV dataset from a specified file path using pandas and returns it as a DataFrame with error handling for file not found and general exceptions.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/e1ecec5f-4ea5-49c5-b4f5-d051ce851294/project_1/analysis.py
  • function load_analysis_data 73.8% similar

    Loads CSV dataset(s) into pandas DataFrames based on dataset configuration, supporting both single dataset loading and comparison mode with two datasets.

    From: /tf/active/vicechatdev/data_quality_dashboard.py
  • function create_test_dataset 57.4% similar

    Creates a test CSV dataset with sample product sales data across different regions and months, saving it to a temporary file.

    From: /tf/active/vicechatdev/vice_ai/test_integration.py
  • function upload_data_section_dataset 53.8% similar

    Flask API endpoint that handles CSV file uploads for data section analysis, processes the file, extracts metadata, and stores it in the data section for persistence.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function explore_data 53.4% similar

    Performs comprehensive exploratory data analysis on a pandas DataFrame, printing dataset overview, data types, missing values, descriptive statistics, and identifying categorical and numerical variables.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
← Back to Browse