🔍 Code Extractor

Search Components

Full-Text: Fast keyword matching | Semantic: AI-powered understanding of intent (finds similar concepts)

Search Results for "ChromaDB"

Found 47 matching component(s)

  • class MyEmbeddingFunction_v1

    A custom embedding function class that generates embeddings for documents using OpenAI's API, with built-in text summarization for long documents and token management.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG copy.py

    embeddings openai chromadb vector-database text-summarization
  • class SimpleDataHandle

    A data handler class that manages multiple data sources with different types (dataframes, vector stores, databases) and their associated processing configurations.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG copy.py

    data-management registry vector-store RAG dataframe
  • class OneCo_hybrid_RAG

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG copy.py

    class oneco_hybrid_rag
  • class FixedProjectVictoriaGenerator

    Fixed Project Victoria Disclosure Generator that properly handles all warranty sections.

    File: /tf/active/vicechatdev/fixed_project_victoria_generator.py

    class fixedprojectvictoriagenerator
  • function main_v58

    Entry point function that instantiates a FixedProjectVictoriaGenerator and executes its complete pipeline to generate fixed disclosure documents.

    File: /tf/active/vicechatdev/fixed_project_victoria_generator.py

    entry-point pipeline disclosure-generation orchestration main-function
  • class pathobrowser_base

    Base class that contains all static elements of the app Parameters ---------- image : str An Image UID which may be passed on app startup. Immediately redirects to said image Attributes ---------- current_user : Userclass A class containing various information on the user workspace : panel.layout.Column The main container of the app sidebar : panel.layout.Column Container showing items on the side of the app head : panel.layout.Row The header of the app modal : panel.layout.Column The container for the modal window of the app

    File: /tf/active/vicechatdev/datacapture_integrated.py

    class pathobrowser_base
  • class OneCo_hybrid_RAG_v1

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG_old.py

    class oneco_hybrid_rag
  • class MyEmbeddingFunction_v2

    A custom embedding function class that generates embeddings for text documents using OpenAI's embedding models, with automatic text summarization and token management for large documents.

    File: /tf/active/vicechatdev/offline_docstore_multi_vice.py

    embeddings openai chromadb text-processing summarization
  • class ImprovedProjectVictoriaGenerator

    Improved Project Victoria Disclosure Generator with proper reference management.

    File: /tf/active/vicechatdev/improved_project_victoria_generator.py

    class improvedprojectvictoriagenerator
  • function main_v62

    Entry point function that instantiates an ImprovedProjectVictoriaGenerator and executes its complete pipeline to generate disclosure documents.

    File: /tf/active/vicechatdev/improved_project_victoria_generator.py

    entry-point main-function disclosure-generation RAG document-generation
  • class OneCo_hybrid_RAG_v2

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG.py

    class oneco_hybrid_rag
  • class ExtensiveSearchManager

    Manages extensive search functionality including full document retrieval, summarization, and enhanced context gathering.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG.py

    class extensivesearchmanager
  • function test_chroma_collections

    A diagnostic function that tests connectivity to ChromaDB instances across multiple connection methods and lists all available collections with their metadata.

    File: /tf/active/vicechatdev/test_chroma_collections.py

    chromadb database-testing diagnostics connection-testing vector-database
  • function test_collection_creation

    A diagnostic test function that verifies Chroma DB functionality by creating a test collection, adding a document, querying it, and cleaning up.

    File: /tf/active/vicechatdev/test_chroma_collections.py

    testing debugging chroma-db vector-database health-check
  • class ProjectVictoriaDisclosureGenerator

    Main class for generating Project Victoria disclosures from warranty claims.

    File: /tf/active/vicechatdev/project_victoria_disclosure_generator.py

    class projectvictoriadisclosuregenerator
  • class MyEmbeddingFunction_v3

    A custom embedding function class that generates embeddings for text documents using OpenAI's embedding models, with automatic text summarization and token limit handling for large documents.

    File: /tf/active/vicechatdev/offline_docstore_multi.py

    embeddings openai vector-database chromadb text-processing
  • class pathobrowser_base_v1

    Base class that contains all static elements of the app Parameters ---------- image : str An Image UID which may be passed on app startup. Immediately redirects to said image Attributes ---------- current_user : Userclass A class containing various information on the user workspace : panel.layout.Column The main container of the app sidebar : panel.layout.Column Container showing items on the side of the app head : panel.layout.Row The header of the app modal : panel.layout.Column The container for the modal window of the app

    File: /tf/active/vicechatdev/datacapture.py

    class pathobrowser_base
  • function reset_collection

    Deletes an existing ChromaDB collection and logs the operation, requiring an application restart to recreate the collection.

    File: /tf/active/vicechatdev/docchat/reset_collection.py

    chromadb vector-database database-management collection-reset cleanup
  • function get_document_info

    Retrieves indexing status and metadata for a document, including whether it's indexed, its document ID, chunk count, and reindexing status.

    File: /tf/active/vicechatdev/docchat/app.py

    document-management indexing metadata vector-database chromadb
  • function check_configuration

    A comprehensive configuration verification function that checks and displays the status of all DocChat system settings, including API keys, models, ChromaDB connection, directories, and LLM initialization.

    File: /tf/active/vicechatdev/docchat/verify_setup.py

    configuration verification diagnostics setup validation
  • class DocChatRAG

    Main RAG engine with three operating modes: 1. Basic RAG (similarity search) 2. Extensive (full document retrieval with preprocessing) 3. Full Reading (process all documents)

    File: /tf/active/vicechatdev/docchat/rag_engine.py

    class docchatrag
  • class DocChatEmbeddingFunction

    A custom ChromaDB embedding function that generates OpenAI embeddings with automatic text summarization for documents exceeding token limits.

    File: /tf/active/vicechatdev/docchat/document_indexer.py

    embeddings chromadb openai text-processing summarization
  • class DocumentIndexer

    A class for indexing documents into ChromaDB with support for multiple file formats (PDF, Word, PowerPoint, Excel, text files), smart incremental indexing, and document chunk management.

    File: /tf/active/vicechatdev/docchat/document_indexer.py

    document-indexing vector-database chromadb embeddings pdf-processing
  • function test_config

    A test function that validates the presence and correctness of all required configuration settings for a multi-model RAG (Retrieval-Augmented Generation) system.

    File: /tf/active/vicechatdev/docchat/test_model_selection.py

    testing validation configuration unit-test assertion
  • function test_flask_routes

    A test function that validates Flask application routes are properly configured by checking for required endpoints.

    File: /tf/active/vicechatdev/docchat/test_model_selection.py

    testing flask routes validation web-application
  • function check_dependencies

    Validates the installation status of all required Python packages for the DocChat application by attempting to import each dependency and logging the results.

    File: /tf/active/vicechatdev/docchat/integration.py

    dependency-check validation installation package-management flask
  • function configure_docchat

    Configures DocChat module settings by overriding default configuration values from a Flask application instance and optional keyword arguments.

    File: /tf/active/vicechatdev/docchat/integration.py

    configuration flask setup chromadb openai
  • function main_v59

    Command-line interface function that orchestrates the cleaning of ChromaDB collections by removing duplicates and similar documents, with options to skip collections and customize the cleaning process.

    File: /tf/active/vicechatdev/chromadb-cleanup/main.py

    cli command-line chromadb database-cleaning deduplication
  • function clean_collection

    Cleans a ChromaDB collection by removing duplicate and similar documents using hash-based and similarity-based deduplication techniques, then saves the cleaned data to a new collection.

    File: /tf/active/vicechatdev/chromadb-cleanup/main.py

    data-cleaning deduplication chromadb vector-database similarity-detection
  • function load_data_from_chromadb

    Connects to a ChromaDB instance and retrieves all documents from a specified collection, returning them as a list of dictionaries with document IDs, text content, embeddings, and metadata.

    File: /tf/active/vicechatdev/chromadb-cleanup/main.py

    chromadb vector-database data-loading document-retrieval embeddings
  • function save_data_to_chromadb_v1

    Saves a list of document dictionaries to a ChromaDB collection, with support for batch processing, embeddings, and metadata storage.

    File: /tf/active/vicechatdev/chromadb-cleanup/main.py

    chromadb vector-database document-storage embeddings batch-processing
  • function main_v50

    Command-line interface function that orchestrates a ChromaDB collection cleaning pipeline by removing duplicate and similar documents through hashing and similarity screening.

    File: /tf/active/vicechatdev/chromadb-cleanup/main copy.py

    cli command-line data-cleaning deduplication chromadb
  • function load_data_from_chromadb_v1

    Retrieves all documents from a specified ChromaDB collection, including their IDs, text content, embeddings, and metadata.

    File: /tf/active/vicechatdev/chromadb-cleanup/main copy.py

    chromadb database document-retrieval vector-database embeddings
  • function save_data_to_chromadb

    Saves a list of document dictionaries to a ChromaDB vector database collection, optionally including embeddings and metadata.

    File: /tf/active/vicechatdev/chromadb-cleanup/main copy.py

    chromadb vector-database document-storage embeddings persistence
  • class Config_v6

    A dataclass that stores configuration settings for a ChromaDB cleanup process, including connection parameters, cleaning/clustering options, and summarization settings.

    File: /tf/active/vicechatdev/chromadb-cleanup/src/config.py

    configuration dataclass chromadb settings cleanup
  • function api_send_chat_message

    Flask API endpoint that handles sending a message in a chat session, processes it through a hybrid RAG engine with configurable search and memory settings, and returns an AI-generated response with references.

    File: /tf/active/vicechatdev/vice_ai/complex_app.py

    flask api chat rag hybrid-rag
  • function process_chat_request_background

    Process chat request in background thread

    File: /tf/active/vicechatdev/vice_ai/app.py

    function process_chat_request_background
  • function api_chat_v1

    Handle chat API requests with support for long-running tasks

    File: /tf/active/vicechatdev/vice_ai/app.py

    function api_chat
  • function api_send_chat_message_v1

    Flask API endpoint that handles sending messages in a chat session, processes them through a RAG (Retrieval-Augmented Generation) engine with configurable LLM models, and returns AI-generated responses with references.

    File: /tf/active/vicechatdev/vice_ai/new_app.py

    chat api rag llm conversational-ai
  • class OneCo_hybrid_RAG_v3

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/vice_ai/hybrid_rag_engine.py

    class oneco_hybrid_rag
  • class ExtensiveSearchManager_v1

    Manages extensive search functionality including full document retrieval, summarization, and enhanced context gathering.

    File: /tf/active/vicechatdev/vice_ai/hybrid_rag_engine.py

    class extensivesearchmanager
  • function test_single_vendor

    Tests vendor enrichment by querying a RAG (Retrieval-Augmented Generation) system to find official contact information (email and VAT number) for a specified vendor using document search and web search capabilities.

    File: /tf/active/vicechatdev/find_email/test_enrichment.py

    testing vendor-enrichment RAG information-retrieval contact-information
  • function main_v47

    Entry point function that orchestrates vendor enrichment testing by parsing command-line arguments, running setup validation, and executing a single vendor test against a ChromaDB collection.

    File: /tf/active/vicechatdev/find_email/test_enrichment.py

    testing vendor-enrichment command-line argparse chromadb
  • class VendorEnricher

    A class that enriches vendor information by finding official email addresses and VAT numbers using RAG (Retrieval-Augmented Generation) with ChromaDB document search and web search capabilities.

    File: /tf/active/vicechatdev/find_email/vendor_enrichment.py

    vendor-enrichment data-enrichment RAG web-search ChromaDB
  • function main_v14

    Command-line interface function that orchestrates the enrichment of vendor data from an Excel file with email and VAT information using ChromaDB and RAG engine.

    File: /tf/active/vicechatdev/find_email/vendor_enrichment.py

    cli command-line data-enrichment vendor-management excel-processing
  • class QAUpdater

    Orchestrates a two-step Q&A document updating process that generates optimal search queries, retrieves information from internal and external sources, and uses an LLM to determine if updates are needed.

    File: /tf/active/vicechatdev/QA_updater/qa_engine/qa_updater.py

    qa-management document-updating llm-orchestration information-retrieval vector-search
  • class ChromaManager

    ChromaManager is a class that manages interactions with a Chroma vector database, providing methods to create collections, add documents with embeddings, and query for similar documents.

    File: /tf/active/vicechatdev/QA_updater/knowledge_store/chroma_manager.py

    vector-database chromadb embeddings semantic-search document-retrieval

Search Examples