🔍 Code Extractor

Search Components

Full-Text: Fast keyword matching | Semantic: AI-powered understanding of intent (finds similar concepts)

Search Results for "docchatrag"

Found 11 matching component(s)

  • function test_language_detection_and_translation

    A test function that validates multi-language query processing capabilities including language detection, translation, and query expansion across multiple supported languages.

    File: /tf/active/vicechatdev/docchat/test_multilanguage.py

    testing multi-language language-detection translation RAG
  • function basic_rag_example

    Demonstrates a basic RAG (Retrieval-Augmented Generation) workflow by initializing a DocChatRAG engine, executing a sample query about document topics, and displaying the response with metadata.

    File: /tf/active/vicechatdev/docchat/example_usage.py

    rag retrieval-augmented-generation example demo document-chat
  • function extensive_mode_example

    Demonstrates the usage of DocChatRAG's extensive mode for detailed document analysis with a sample query about methodologies.

    File: /tf/active/vicechatdev/docchat/example_usage.py

    example demo RAG retrieval-augmented-generation extensive-mode
  • function full_reading_example

    Demonstrates the full reading mode of a RAG (Retrieval-Augmented Generation) system by processing all documents to answer a comprehensive query about key findings.

    File: /tf/active/vicechatdev/docchat/example_usage.py

    example demonstration RAG retrieval-augmented-generation full-reading
  • function conversation_example

    Demonstrates a multi-turn conversational RAG system with chat history management, showing how follow-up questions are automatically optimized based on conversation context.

    File: /tf/active/vicechatdev/docchat/example_usage.py

    RAG conversational-ai chat-history multi-turn-conversation context-management
  • function init_engines

    Initializes the RAG (Retrieval-Augmented Generation) engine and document indexer components, loads persisted sessions, and optionally starts background auto-indexing of documents.

    File: /tf/active/vicechatdev/docchat/app.py

    initialization RAG document-indexing background-processing threading
  • function api_update_system_config

    Flask API endpoint that allows administrators to update system configuration settings including system role, expertise, domain context, custom instructions, output style, and query languages, with persistence to disk.

    File: /tf/active/vicechatdev/docchat/app.py

    admin configuration system-settings api-endpoint flask
  • class DocChatRAG

    Main RAG engine with three operating modes: 1. Basic RAG (similarity search) 2. Extensive (full document retrieval with preprocessing) 3. Full Reading (process all documents)

    File: /tf/active/vicechatdev/docchat/rag_engine.py

    class docchatrag
  • function index_v2

    Flask route handler that renders the main DocChat interface with document collection statistics.

    File: /tf/active/vicechatdev/docchat/blueprint.py

    flask route-handler web-interface authentication rag
  • function chat

    Flask route handler that processes chat requests with RAG (Retrieval-Augmented Generation) capabilities, managing conversation sessions, chat history, and document-based question answering.

    File: /tf/active/vicechatdev/docchat/blueprint.py

    chat rag retrieval-augmented-generation conversational-ai document-qa
  • function get_stats

    Flask API endpoint that retrieves and returns statistics about a document collection from a RAG (Retrieval-Augmented Generation) system.

    File: /tf/active/vicechatdev/docchat/blueprint.py

    flask api endpoint statistics rag

Search Examples