🔍 Code Extractor

Search Components

Full-Text: Fast keyword matching | Semantic: AI-powered understanding of intent (finds similar concepts)

Search Results for "model"

Found 50 matching component(s)

  • function validate_and_alternatives

    Validates whether a given keyword is a valid chemical compound, biochemical concept, or drug-related term using GPT-4, and returns alternative names/synonyms if valid.

    File: /tf/active/vicechatdev/offline_parser_docstore.py

    validation chemistry biochemistry drug-research llm
  • class RegulatoryExtractor

    A class for extracting structured metadata from regulatory guideline PDF documents using LLM-based analysis and storing the results in an Excel tracking spreadsheet.

    File: /tf/active/vicechatdev/reg_extractor.py

    pdf-extraction regulatory-documents llm-extraction ocr data-extraction
  • function test_complex_url_hyperlink

    A test function that validates the creation of Word documents with complex FileCloud URLs containing special characters, query parameters, and URL fragments as clickable hyperlinks.

    File: /tf/active/vicechatdev/test_complex_hyperlink.py

    testing word-document hyperlink docx url-handling
  • function test_markdown_link_parsing

    A test function that validates markdown link parsing capabilities, specifically testing extraction and URL encoding of complex URLs containing special characters from Quill editor format.

    File: /tf/active/vicechatdev/test_complex_hyperlink.py

    testing markdown url-parsing regex url-encoding
  • class MyEmbeddingFunction_v1

    A custom embedding function class that generates embeddings for documents using OpenAI's API, with built-in text summarization for long documents and token management.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG copy.py

    embeddings openai chromadb vector-database text-summarization
  • class OneCo_hybrid_RAG

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG copy.py

    class oneco_hybrid_rag
  • class FixedProjectVictoriaGenerator

    Fixed Project Victoria Disclosure Generator that properly handles all warranty sections.

    File: /tf/active/vicechatdev/fixed_project_victoria_generator.py

    class fixedprojectvictoriagenerator
  • class DocumentDetail

    Document detail view component

    File: /tf/active/vicechatdev/document_detail_backup.py

    class documentdetail
  • class pathobrowser_base

    Base class that contains all static elements of the app Parameters ---------- image : str An Image UID which may be passed on app startup. Immediately redirects to said image Attributes ---------- current_user : Userclass A class containing various information on the user workspace : panel.layout.Column The main container of the app sidebar : panel.layout.Column Container showing items on the side of the app head : panel.layout.Row The header of the app modal : panel.layout.Column The container for the modal window of the app

    File: /tf/active/vicechatdev/datacapture_integrated.py

    class pathobrowser_base
  • class OneCo_hybrid_RAG_v1

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG_old.py

    class oneco_hybrid_rag
  • class MeetingMinutesGenerator

    A class that generates professional meeting minutes from meeting transcripts using OpenAI's GPT-4o model, with capabilities to parse metadata, extract action items, and format output.

    File: /tf/active/vicechatdev/meeting_minutes_generator.py

    meeting-minutes transcript-processing openai gpt-4o natural-language-processing
  • class MyEmbeddingFunction_v2

    A custom embedding function class that generates embeddings for text documents using OpenAI's embedding models, with automatic text summarization and token management for large documents.

    File: /tf/active/vicechatdev/offline_docstore_multi_vice.py

    embeddings openai chromadb text-processing summarization
  • class DocumentProcessor_v4

    Process different document types for RAG context extraction

    File: /tf/active/vicechatdev/offline_docstore_multi_vice.py

    class documentprocessor
  • class DocumentDetail_v1

    Document detail view component

    File: /tf/active/vicechatdev/document_detail_old.py

    class documentdetail
  • class ImprovedProjectVictoriaGenerator

    Improved Project Victoria Disclosure Generator with proper reference management.

    File: /tf/active/vicechatdev/improved_project_victoria_generator.py

    class improvedprojectvictoriagenerator
  • class MeetingMinutesGenerator_v1

    A class that generates professional meeting minutes from meeting transcripts using either OpenAI's GPT-4o or Google's Gemini AI models.

    File: /tf/active/vicechatdev/advanced_meeting_minutes_generator.py

    meeting-minutes transcript-processing llm gpt-4o gemini
  • function main_v16

    Command-line interface function that orchestrates the generation of meeting minutes from a transcript file using either GPT-4o or Gemini LLM models.

    File: /tf/active/vicechatdev/advanced_meeting_minutes_generator.py

    cli command-line meeting-minutes transcript-processing llm
  • class QueryBasedExtractor_v2

    A class that performs targeted information extraction from text using LLM-based query-guided extraction, with support for handling long documents through chunking and token management.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG.py

    information-extraction text-processing llm openai query-based
  • class OneCo_hybrid_RAG_v2

    A class named OneCo_hybrid_RAG

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG.py

    class oneco_hybrid_rag
  • class ExtensiveSearchManager

    Manages extensive search functionality including full document retrieval, summarization, and enhanced context gathering.

    File: /tf/active/vicechatdev/OneCo_hybrid_RAG.py

    class extensivesearchmanager
  • function generate_diagram_data

    Transforms Neo4j schema information into a structured format suitable for graph visualization, creating separate node and edge data structures.

    File: /tf/active/vicechatdev/neo4j_schema_report.py

    graph-visualization schema-processing neo4j data-transformation diagram-generation
  • class ProjectVictoriaDisclosureGenerator

    Main class for generating Project Victoria disclosures from warranty claims.

    File: /tf/active/vicechatdev/project_victoria_disclosure_generator.py

    class projectvictoriadisclosuregenerator
  • class MyEmbeddingFunction

    Custom embedding function class that integrates OpenAI's embedding API with Chroma DB for generating vector embeddings from text documents.

    File: /tf/active/vicechatdev/project_victoria_disclosure_generator.py

    embeddings openai chroma vector-database nlp
  • class MyEmbeddingFunction_v3

    A custom embedding function class that generates embeddings for text documents using OpenAI's embedding models, with automatic text summarization and token limit handling for large documents.

    File: /tf/active/vicechatdev/offline_docstore_multi.py

    embeddings openai vector-database chromadb text-processing
  • class DocumentProcessor_v5

    Process different document types for RAG context extraction

    File: /tf/active/vicechatdev/offline_docstore_multi.py

    class documentprocessor
  • class pathobrowser_base_v1

    Base class that contains all static elements of the app Parameters ---------- image : str An Image UID which may be passed on app startup. Immediately redirects to said image Attributes ---------- current_user : Userclass A class containing various information on the user workspace : panel.layout.Column The main container of the app sidebar : panel.layout.Column Container showing items on the side of the app head : panel.layout.Row The header of the app modal : panel.layout.Column The container for the modal window of the app

    File: /tf/active/vicechatdev/datacapture.py

    class pathobrowser_base
  • function test_web_ui

    Integration test function that validates a Flask web UI for meeting minutes generation by testing file upload, generation, and regeneration endpoints with sample transcript and PowerPoint files.

    File: /tf/active/vicechatdev/leexi/test_ui.py

    testing integration-test web-ui flask api-testing
  • function extract_previous_reports_summary

    Extracts and summarizes key information from previous meeting report files using document extraction and OpenAI's GPT-4o-mini model to provide context for upcoming meetings.

    File: /tf/active/vicechatdev/leexi/app.py

    meeting-analysis document-extraction text-summarization llm openai
  • function generate_minutes

    Flask route handler that processes uploaded meeting transcripts and optional supporting documents to generate structured meeting minutes using AI, with configurable output styles and validation.

    File: /tf/active/vicechatdev/leexi/app.py

    flask web-api file-upload meeting-minutes ai-generation
  • function regenerate_minutes

    Flask route handler that regenerates meeting minutes from a previous session using modified instructions, model selection, and configuration parameters.

    File: /tf/active/vicechatdev/leexi/app.py

    flask meeting-minutes regeneration ai-generation openai
  • function test_multiple_file_upload

    A test function that validates multiple file upload functionality to a Flask application endpoint by sending a transcript file and multiple previous report files.

    File: /tf/active/vicechatdev/leexi/test_flask_upload.py

    testing file-upload integration-test flask multipart-form
  • function test_attendee_extraction_comprehensive

    A comprehensive test function that validates the attendee extraction logic from meeting transcripts, comparing actual speakers versus mentioned names, and demonstrating integration with meeting minutes generation.

    File: /tf/active/vicechatdev/leexi/test_attendee_comprehensive.py

    testing attendee-extraction meeting-minutes transcript-parsing speaker-identification
  • class EnhancedMeetingMinutesGenerator

    A class named EnhancedMeetingMinutesGenerator

    File: /tf/active/vicechatdev/leexi/enhanced_meeting_minutes_generator.py

    class enhancedmeetingminutesgenerator
  • function main_v2

    Command-line interface function that orchestrates the generation of enhanced meeting minutes from transcript files and PowerPoint presentations using various LLM models (GPT-4o, Azure GPT-4o, or Gemini).

    File: /tf/active/vicechatdev/leexi/enhanced_meeting_minutes_generator.py

    cli command-line meeting-minutes llm gpt-4
  • function test_attendee_extraction

    A test function that validates the attendee extraction logic of the EnhancedMeetingMinutesGenerator by parsing a meeting transcript and displaying extracted metadata including speakers, date, and duration.

    File: /tf/active/vicechatdev/leexi/test_attendee_extraction.py

    testing unit-test meeting-minutes attendee-extraction metadata-parsing
  • function update_session_settings

    Updates the settings (model, mode, options) for an existing chat session and persists the changes to disk.

    File: /tf/active/vicechatdev/docchat/app.py

    session-management settings persistence thread-safe chat
  • function process_chat_background

    Processes chat requests asynchronously in a background thread, managing RAG engine interactions, progress updates, and session state for various query modes including basic, extensive, full_reading, and deep_reflection.

    File: /tf/active/vicechatdev/docchat/app.py

    background-processing async rag chat document-retrieval
  • function api_get_models

    Flask API endpoint that returns a list of available LLM models and the default model configuration.

    File: /tf/active/vicechatdev/docchat/app.py

    api flask rest-api llm configuration
  • function api_chat

    Flask API endpoint that handles chat requests asynchronously, processing user queries through a RAG (Retrieval-Augmented Generation) engine with support for multiple modes, memory, web search, and custom configurations.

    File: /tf/active/vicechatdev/docchat/app.py

    flask api chat async rag
  • function get_instruction_templates

    Flask API endpoint that returns a dictionary of predefined instruction templates for different document types including SOPs, work instructions, quality forms, and document comparison guidelines.

    File: /tf/active/vicechatdev/docchat/app.py

    flask api endpoint templates instructions
  • function check_configuration

    A comprehensive configuration verification function that checks and displays the status of all DocChat system settings, including API keys, models, ChromaDB connection, directories, and LLM initialization.

    File: /tf/active/vicechatdev/docchat/verify_setup.py

    configuration verification diagnostics setup validation
  • class QueryBasedExtractor

    A class that extracts relevant information from documents using a small LLM (Language Model), designed for Extensive and Full Reading modes in RAG systems.

    File: /tf/active/vicechatdev/docchat/rag_engine.py

    information-extraction document-processing llm rag query-based
  • class DocChatRAG

    Main RAG engine with three operating modes: 1. Basic RAG (similarity search) 2. Extensive (full document retrieval with preprocessing) 3. Full Reading (process all documents)

    File: /tf/active/vicechatdev/docchat/rag_engine.py

    class docchatrag
  • function chat

    Flask route handler that processes chat requests with RAG (Retrieval-Augmented Generation) capabilities, managing conversation sessions, chat history, and document-based question answering.

    File: /tf/active/vicechatdev/docchat/blueprint.py

    chat rag retrieval-augmented-generation conversational-ai document-qa
  • function get_available_models

    Flask API endpoint that returns a JSON response containing the list of available LLM models and the default model configured in the application.

    File: /tf/active/vicechatdev/docchat/blueprint.py

    api endpoint flask llm models
  • class DocChatEmbeddingFunction

    A custom ChromaDB embedding function that generates OpenAI embeddings with automatic text summarization for documents exceeding token limits.

    File: /tf/active/vicechatdev/docchat/document_indexer.py

    embeddings chromadb openai text-processing summarization
  • class DocumentIndexer

    A class for indexing documents into ChromaDB with support for multiple file formats (PDF, Word, PowerPoint, Excel, text files), smart incremental indexing, and document chunk management.

    File: /tf/active/vicechatdev/docchat/document_indexer.py

    document-indexing vector-database chromadb embeddings pdf-processing
  • function test_config

    A test function that validates the presence and correctness of all required configuration settings for a multi-model RAG (Retrieval-Augmented Generation) system.

    File: /tf/active/vicechatdev/docchat/test_model_selection.py

    testing validation configuration unit-test assertion
  • function test_rag_engine

    A test function that validates the RAG engine's ability to correctly instantiate different LLM models (OpenAI, Anthropic, Gemini) based on configuration settings.

    File: /tf/active/vicechatdev/docchat/test_model_selection.py

    testing rag llm model-switching validation
  • function test_api_models_endpoint

    A unit test function that validates the structure and content of the /api/models endpoint response, ensuring it contains the correct model configuration data.

    File: /tf/active/vicechatdev/docchat/test_model_selection.py

    testing unit-test api-validation endpoint-testing configuration-validation

Search Examples