🔍 Code Extractor

class DataSectionService

Maturity: 48

Service class for managing DataSection entities, providing CRUD operations and specialized update methods for analysis sessions, plots, and conclusions.

File:
/tf/active/vicechatdev/vice_ai/services.py
Lines:
337 - 404
Complexity:
moderate

Purpose

DataSectionService acts as a business logic layer for DataSection management, encapsulating database operations and providing a clean API for creating, retrieving, updating, and deleting data sections. It handles automatic ID generation, timestamp management, and provides specialized methods for updating specific fields like analysis sessions, generated plots, and analysis conclusions. This service is designed to be used in applications that manage data analysis workflows where sections need to be tracked, linked to analysis sessions, and updated with results.

Source Code

class DataSectionService:
    """Service for managing DataSections"""
    
    def __init__(self, db_manager: DatabaseManager):
        self.db = db_manager
    
    def create_data_section(
        self,
        owner: str,
        title: str,
        description: str = ""
    ) -> DataSection:
        """Create a new data section"""
        section_id = str(uuid.uuid4())
        
        data_section = DataSection(
            id=section_id,
            owner=owner,
            title=title,
            description=description
        )
        
        # Save the data section
        self.db.save_data_section(data_section)
        
        return data_section
    
    def get_data_section(self, section_id: str) -> Optional[DataSection]:
        """Get a data section by ID"""
        return self.db.get_data_section(section_id)
    
    def update_data_section(self, data_section: DataSection) -> bool:
        """Update a data section"""
        data_section.updated_at = datetime.now()
        return self.db.save_data_section(data_section)
    
    def get_user_data_sections(self, owner: str) -> List[DataSection]:
        """Get all data sections for a user"""
        return self.db.get_user_data_sections(owner)
    
    def update_analysis_session(self, section_id: str, session_id: str) -> bool:
        """Link a data section to an analysis session"""
        data_section = self.get_data_section(section_id)
        if data_section:
            data_section.analysis_session_id = session_id
            return self.update_data_section(data_section)
        return False
    
    def update_plots(self, section_id: str, plots: List[str]) -> bool:
        """Update the generated plots for a data section"""
        data_section = self.get_data_section(section_id)
        if data_section:
            data_section.generated_plots = plots
            return self.update_data_section(data_section)
        return False
    
    def update_conclusions(self, section_id: str, conclusions: str) -> bool:
        """Update the analysis conclusions for a data section"""
        data_section = self.get_data_section(section_id)
        if data_section:
            data_section.analysis_conclusions = conclusions
            data_section.current_content = conclusions  # Also update main content
            return self.update_data_section(data_section)
        return False
    
    def delete_data_section(self, section_id: str) -> bool:
        """Delete a data section"""
        return self.db.delete_data_section(section_id)

Parameters

Name Type Default Kind
bases - -

Parameter Details

db_manager: An instance of DatabaseManager that handles all database persistence operations. This is the only required dependency for instantiation and must implement methods like save_data_section, get_data_section, get_user_data_sections, and delete_data_section.

Return Value

Instantiation returns a DataSectionService object. Methods return various types: create_data_section returns a DataSection object with generated UUID; get_data_section returns Optional[DataSection] (None if not found); update methods return bool indicating success/failure; get_user_data_sections returns List[DataSection]; delete_data_section returns bool indicating success.

Class Interface

Methods

__init__(self, db_manager: DatabaseManager)

Purpose: Initialize the DataSectionService with a database manager

Parameters:

  • db_manager: DatabaseManager instance for handling persistence operations

Returns: None (constructor)

create_data_section(self, owner: str, title: str, description: str = '') -> DataSection

Purpose: Create a new data section with auto-generated UUID and save it to the database

Parameters:

  • owner: User identifier who owns this data section
  • title: Title of the data section
  • description: Optional description of the data section (defaults to empty string)

Returns: DataSection object with generated ID and all provided attributes

get_data_section(self, section_id: str) -> Optional[DataSection]

Purpose: Retrieve a data section by its unique identifier

Parameters:

  • section_id: UUID string of the data section to retrieve

Returns: DataSection object if found, None if not found

update_data_section(self, data_section: DataSection) -> bool

Purpose: Update an existing data section, automatically setting the updated_at timestamp

Parameters:

  • data_section: DataSection object with modified attributes to save

Returns: True if update successful, False otherwise

get_user_data_sections(self, owner: str) -> List[DataSection]

Purpose: Retrieve all data sections belonging to a specific user

Parameters:

  • owner: User identifier to filter data sections by

Returns: List of DataSection objects owned by the user (empty list if none found)

update_analysis_session(self, section_id: str, session_id: str) -> bool

Purpose: Link a data section to an analysis session by updating the analysis_session_id field

Parameters:

  • section_id: UUID string of the data section to update
  • session_id: Analysis session identifier to link to this data section

Returns: True if update successful, False if section not found or update failed

update_plots(self, section_id: str, plots: List[str]) -> bool

Purpose: Update the list of generated plots associated with a data section

Parameters:

  • section_id: UUID string of the data section to update
  • plots: List of plot identifiers or file paths to associate with this section

Returns: True if update successful, False if section not found or update failed

update_conclusions(self, section_id: str, conclusions: str) -> bool

Purpose: Update the analysis conclusions for a data section, also updating the current_content field

Parameters:

  • section_id: UUID string of the data section to update
  • conclusions: Analysis conclusions text to store

Returns: True if update successful, False if section not found or update failed

delete_data_section(self, section_id: str) -> bool

Purpose: Delete a data section from the database

Parameters:

  • section_id: UUID string of the data section to delete

Returns: True if deletion successful, False otherwise

Attributes

Name Type Description Scope
db DatabaseManager Database manager instance used for all persistence operations instance

Dependencies

  • uuid
  • typing
  • datetime

Required Imports

import uuid
from typing import List, Optional
from datetime import datetime
from models import DataSection, DatabaseManager

Usage Example

from models import DatabaseManager, DataSection
from data_section_service import DataSectionService

# Initialize the service
db_manager = DatabaseManager()
service = DataSectionService(db_manager)

# Create a new data section
section = service.create_data_section(
    owner='user123',
    title='Sales Analysis Q1',
    description='Quarterly sales data analysis'
)

# Retrieve a data section
retrieved = service.get_data_section(section.id)

# Update analysis session
success = service.update_analysis_session(section.id, 'session_456')

# Update plots
plots = ['plot1.png', 'plot2.png']
service.update_plots(section.id, plots)

# Update conclusions
service.update_conclusions(section.id, 'Sales increased by 15%')

# Get all sections for a user
user_sections = service.get_user_data_sections('user123')

# Delete a section
service.delete_data_section(section.id)

Best Practices

  • Always instantiate with a valid DatabaseManager instance that implements all required database methods
  • The service automatically generates UUIDs for new sections - do not provide custom IDs
  • Update methods automatically set the updated_at timestamp, so manual timestamp management is not needed
  • Check return values from update and delete methods to verify operation success
  • Use get_data_section before update operations to ensure the section exists
  • The update_conclusions method updates both analysis_conclusions and current_content fields simultaneously
  • All update methods follow a pattern: retrieve, modify, save - they handle None checks internally
  • The service is stateless except for the db_manager reference, making it safe for concurrent use if the DatabaseManager is thread-safe
  • Consider implementing transaction support in DatabaseManager for atomic operations across multiple updates

Similar Components

AI-powered semantic similarity - components with related functionality:

  • class DataAnalysisService 77.7% similar

    Service class for managing data analysis operations within document sections, integrating with SmartStat components for statistical analysis, dataset processing, and visualization generation.

    From: /tf/active/vicechatdev/vice_ai/data_analysis_service.py
  • class DataSection 76.3% similar

    A dataclass representing a dedicated data analysis section that stores analysis results, plots, dataset information, and conclusions separately from text content.

    From: /tf/active/vicechatdev/vice_ai/models.py
  • class TextSectionService 73.4% similar

    Service class for managing TextSection entities, providing CRUD operations, versioning, chat functionality, and search capabilities.

    From: /tf/active/vicechatdev/vice_ai/services.py
  • class DocumentService 69.1% similar

    Service class for managing Document entities, including creation, retrieval, section management, versioning, and duplication operations.

    From: /tf/active/vicechatdev/vice_ai/services.py
  • class DataAnalysisSession_v1 67.1% similar

    A dataclass representing a statistical analysis session that is linked to specific document sections, managing analysis state, messages, plots, and configuration.

    From: /tf/active/vicechatdev/vice_ai/models.py
← Back to Browse