class DataSectionService
Service class for managing DataSection entities, providing CRUD operations and specialized update methods for analysis sessions, plots, and conclusions.
/tf/active/vicechatdev/vice_ai/services.py
337 - 404
moderate
Purpose
DataSectionService acts as a business logic layer for DataSection management, encapsulating database operations and providing a clean API for creating, retrieving, updating, and deleting data sections. It handles automatic ID generation, timestamp management, and provides specialized methods for updating specific fields like analysis sessions, generated plots, and analysis conclusions. This service is designed to be used in applications that manage data analysis workflows where sections need to be tracked, linked to analysis sessions, and updated with results.
Source Code
class DataSectionService:
"""Service for managing DataSections"""
def __init__(self, db_manager: DatabaseManager):
self.db = db_manager
def create_data_section(
self,
owner: str,
title: str,
description: str = ""
) -> DataSection:
"""Create a new data section"""
section_id = str(uuid.uuid4())
data_section = DataSection(
id=section_id,
owner=owner,
title=title,
description=description
)
# Save the data section
self.db.save_data_section(data_section)
return data_section
def get_data_section(self, section_id: str) -> Optional[DataSection]:
"""Get a data section by ID"""
return self.db.get_data_section(section_id)
def update_data_section(self, data_section: DataSection) -> bool:
"""Update a data section"""
data_section.updated_at = datetime.now()
return self.db.save_data_section(data_section)
def get_user_data_sections(self, owner: str) -> List[DataSection]:
"""Get all data sections for a user"""
return self.db.get_user_data_sections(owner)
def update_analysis_session(self, section_id: str, session_id: str) -> bool:
"""Link a data section to an analysis session"""
data_section = self.get_data_section(section_id)
if data_section:
data_section.analysis_session_id = session_id
return self.update_data_section(data_section)
return False
def update_plots(self, section_id: str, plots: List[str]) -> bool:
"""Update the generated plots for a data section"""
data_section = self.get_data_section(section_id)
if data_section:
data_section.generated_plots = plots
return self.update_data_section(data_section)
return False
def update_conclusions(self, section_id: str, conclusions: str) -> bool:
"""Update the analysis conclusions for a data section"""
data_section = self.get_data_section(section_id)
if data_section:
data_section.analysis_conclusions = conclusions
data_section.current_content = conclusions # Also update main content
return self.update_data_section(data_section)
return False
def delete_data_section(self, section_id: str) -> bool:
"""Delete a data section"""
return self.db.delete_data_section(section_id)
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
bases |
- | - |
Parameter Details
db_manager: An instance of DatabaseManager that handles all database persistence operations. This is the only required dependency for instantiation and must implement methods like save_data_section, get_data_section, get_user_data_sections, and delete_data_section.
Return Value
Instantiation returns a DataSectionService object. Methods return various types: create_data_section returns a DataSection object with generated UUID; get_data_section returns Optional[DataSection] (None if not found); update methods return bool indicating success/failure; get_user_data_sections returns List[DataSection]; delete_data_section returns bool indicating success.
Class Interface
Methods
__init__(self, db_manager: DatabaseManager)
Purpose: Initialize the DataSectionService with a database manager
Parameters:
db_manager: DatabaseManager instance for handling persistence operations
Returns: None (constructor)
create_data_section(self, owner: str, title: str, description: str = '') -> DataSection
Purpose: Create a new data section with auto-generated UUID and save it to the database
Parameters:
owner: User identifier who owns this data sectiontitle: Title of the data sectiondescription: Optional description of the data section (defaults to empty string)
Returns: DataSection object with generated ID and all provided attributes
get_data_section(self, section_id: str) -> Optional[DataSection]
Purpose: Retrieve a data section by its unique identifier
Parameters:
section_id: UUID string of the data section to retrieve
Returns: DataSection object if found, None if not found
update_data_section(self, data_section: DataSection) -> bool
Purpose: Update an existing data section, automatically setting the updated_at timestamp
Parameters:
data_section: DataSection object with modified attributes to save
Returns: True if update successful, False otherwise
get_user_data_sections(self, owner: str) -> List[DataSection]
Purpose: Retrieve all data sections belonging to a specific user
Parameters:
owner: User identifier to filter data sections by
Returns: List of DataSection objects owned by the user (empty list if none found)
update_analysis_session(self, section_id: str, session_id: str) -> bool
Purpose: Link a data section to an analysis session by updating the analysis_session_id field
Parameters:
section_id: UUID string of the data section to updatesession_id: Analysis session identifier to link to this data section
Returns: True if update successful, False if section not found or update failed
update_plots(self, section_id: str, plots: List[str]) -> bool
Purpose: Update the list of generated plots associated with a data section
Parameters:
section_id: UUID string of the data section to updateplots: List of plot identifiers or file paths to associate with this section
Returns: True if update successful, False if section not found or update failed
update_conclusions(self, section_id: str, conclusions: str) -> bool
Purpose: Update the analysis conclusions for a data section, also updating the current_content field
Parameters:
section_id: UUID string of the data section to updateconclusions: Analysis conclusions text to store
Returns: True if update successful, False if section not found or update failed
delete_data_section(self, section_id: str) -> bool
Purpose: Delete a data section from the database
Parameters:
section_id: UUID string of the data section to delete
Returns: True if deletion successful, False otherwise
Attributes
| Name | Type | Description | Scope |
|---|---|---|---|
db |
DatabaseManager | Database manager instance used for all persistence operations | instance |
Dependencies
uuidtypingdatetime
Required Imports
import uuid
from typing import List, Optional
from datetime import datetime
from models import DataSection, DatabaseManager
Usage Example
from models import DatabaseManager, DataSection
from data_section_service import DataSectionService
# Initialize the service
db_manager = DatabaseManager()
service = DataSectionService(db_manager)
# Create a new data section
section = service.create_data_section(
owner='user123',
title='Sales Analysis Q1',
description='Quarterly sales data analysis'
)
# Retrieve a data section
retrieved = service.get_data_section(section.id)
# Update analysis session
success = service.update_analysis_session(section.id, 'session_456')
# Update plots
plots = ['plot1.png', 'plot2.png']
service.update_plots(section.id, plots)
# Update conclusions
service.update_conclusions(section.id, 'Sales increased by 15%')
# Get all sections for a user
user_sections = service.get_user_data_sections('user123')
# Delete a section
service.delete_data_section(section.id)
Best Practices
- Always instantiate with a valid DatabaseManager instance that implements all required database methods
- The service automatically generates UUIDs for new sections - do not provide custom IDs
- Update methods automatically set the updated_at timestamp, so manual timestamp management is not needed
- Check return values from update and delete methods to verify operation success
- Use get_data_section before update operations to ensure the section exists
- The update_conclusions method updates both analysis_conclusions and current_content fields simultaneously
- All update methods follow a pattern: retrieve, modify, save - they handle None checks internally
- The service is stateless except for the db_manager reference, making it safe for concurrent use if the DatabaseManager is thread-safe
- Consider implementing transaction support in DatabaseManager for atomic operations across multiple updates
Similar Components
AI-powered semantic similarity - components with related functionality:
-
class DataAnalysisService 77.7% similar
-
class DataSection 76.3% similar
-
class TextSectionService 73.4% similar
-
class DocumentService 69.1% similar
-
class DataAnalysisSession_v1 67.1% similar