🔍 Code Extractor

class DataSection

Maturity: 51

A dataclass representing a dedicated data analysis section that stores analysis results, plots, dataset information, and conclusions separately from text content.

File:
/tf/active/vicechatdev/vice_ai/models.py
Lines:
425 - 499
Complexity:
moderate

Purpose

DataSection serves as a container for data analysis work within a larger document or project system. It manages the lifecycle of a data analysis section including versioning, status tracking, ownership, and storage of analysis artifacts like plots and conclusions. It provides serialization/deserialization capabilities for persistence and integrates with a DataAnalysisSession through a session ID reference.

Source Code

class DataSection:
    """Dedicated Data Analysis Section - separate from TextSection"""
    id: str
    owner: str  # User email/ID
    title: str
    description: str = ""
    
    # Content and versioning
    current_content: str = ""  # For summary/conclusions
    status: ContentStatus = ContentStatus.DRAFT
    
    # Timestamps
    created_at: datetime = None
    updated_at: datetime = None
    
    # Data Analysis specific fields
    analysis_session_id: str = None  # Link to DataAnalysisSession
    dataset_info: Dict[str, Any] = None  # Dataset metadata
    generated_plots: List[str] = None  # Plot file paths
    analysis_conclusions: str = ""  # Final analysis conclusions
    
    # Metadata
    tags: List[str] = None
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.created_at is None:
            self.created_at = datetime.now()
        if self.updated_at is None:
            self.updated_at = datetime.now()
        if self.dataset_info is None:
            self.dataset_info = {}
        if self.generated_plots is None:
            self.generated_plots = []
        if self.tags is None:
            self.tags = []
        if self.metadata is None:
            self.metadata = {}
    
    def to_dict(self) -> Dict:
        return {
            'id': self.id,
            'owner': self.owner,
            'title': self.title,
            'description': self.description,
            'current_content': self.current_content,
            'status': self.status.value,
            'created_at': self.created_at.isoformat(),
            'updated_at': self.updated_at.isoformat(),
            'analysis_session_id': self.analysis_session_id,
            'dataset_info': self.dataset_info,
            'generated_plots': self.generated_plots,
            'analysis_conclusions': self.analysis_conclusions,
            'tags': self.tags,
            'metadata': self.metadata
        }
    
    @classmethod
    def from_dict(cls, data: Dict) -> 'DataSection':
        return cls(
            id=data['id'],
            owner=data['owner'],
            title=data['title'],
            description=data.get('description', ''),
            current_content=data.get('current_content', ''),
            status=ContentStatus(data.get('status', ContentStatus.DRAFT.value)),
            created_at=datetime.fromisoformat(data['created_at']),
            updated_at=datetime.fromisoformat(data['updated_at']),
            analysis_session_id=data.get('analysis_session_id'),
            dataset_info=data.get('dataset_info', {}),
            generated_plots=data.get('generated_plots', []),
            analysis_conclusions=data.get('analysis_conclusions', ''),
            tags=data.get('tags', []),
            metadata=data.get('metadata', {})
        )

Parameters

Name Type Default Kind
bases - -

Parameter Details

id: Unique identifier string for the data section, typically a UUID or similar unique string

owner: User email or ID string identifying who owns/created this data section

title: Display title string for the data section

description: Optional detailed description string of the data section's purpose (defaults to empty string)

current_content: String containing summary or conclusions text (defaults to empty string)

status: ContentStatus enum value indicating the section's workflow state (defaults to ContentStatus.DRAFT)

created_at: datetime object marking when the section was created (auto-set to current time if None)

updated_at: datetime object marking last modification time (auto-set to current time if None)

analysis_session_id: Optional string linking to a DataAnalysisSession ID for tracking the analysis workflow

dataset_info: Dictionary containing metadata about the dataset being analyzed (defaults to empty dict)

generated_plots: List of strings containing file paths to generated plot images (defaults to empty list)

analysis_conclusions: String containing final analysis conclusions and findings (defaults to empty string)

tags: List of string tags for categorization and search (defaults to empty list)

metadata: Dictionary for storing arbitrary additional metadata (defaults to empty dict)

Return Value

Instantiation returns a DataSection object with all attributes initialized. The to_dict() method returns a dictionary representation with datetime objects converted to ISO format strings and enums converted to their values. The from_dict() class method returns a new DataSection instance reconstructed from a dictionary.

Class Interface

Methods

__post_init__(self) -> None

Purpose: Automatically called after dataclass __init__ to initialize default values for mutable fields and set timestamps

Returns: None - modifies instance attributes in place

to_dict(self) -> Dict

Purpose: Serializes the DataSection instance to a dictionary with proper type conversions for datetime and enum values

Returns: Dictionary containing all instance attributes with datetime objects converted to ISO format strings and ContentStatus enum converted to its string value

from_dict(cls, data: Dict) -> 'DataSection'

Purpose: Class method that deserializes a dictionary back into a DataSection instance with proper type conversions

Parameters:

  • data: Dictionary containing serialized DataSection data, typically from to_dict() output or database storage

Returns: New DataSection instance with all attributes properly typed and initialized from the dictionary data

Attributes

Name Type Description Scope
id str Unique identifier for the data section instance
owner str User email or ID who owns this section instance
title str Display title of the data section instance
description str Detailed description of the section's purpose instance
current_content str Summary or conclusions text content instance
status ContentStatus Current workflow status of the section (draft, published, etc.) instance
created_at datetime Timestamp when the section was created instance
updated_at datetime Timestamp of last modification instance
analysis_session_id str Reference ID linking to a DataAnalysisSession instance
dataset_info Dict[str, Any] Metadata about the dataset being analyzed (rows, columns, source, etc.) instance
generated_plots List[str] List of file paths to generated plot images instance
analysis_conclusions str Final analysis conclusions and findings text instance
tags List[str] List of tags for categorization and search instance
metadata Dict[str, Any] Arbitrary additional metadata storage instance

Dependencies

  • datetime
  • typing
  • dataclasses

Required Imports

from datetime import datetime
from typing import List, Dict, Any
from dataclasses import dataclass

Conditional/Optional Imports

These imports are only needed under specific conditions:

from enum import Enum

Condition: Required for ContentStatus enum which must be defined or imported separately

Required (conditional)

Usage Example

from datetime import datetime
from typing import List, Dict, Any
from dataclasses import dataclass
from enum import Enum

class ContentStatus(Enum):
    DRAFT = 'draft'
    PUBLISHED = 'published'

@dataclass
class DataSection:
    # ... (class definition as provided)
    pass

# Create a new data section
section = DataSection(
    id='section-123',
    owner='user@example.com',
    title='Sales Analysis Q4 2023',
    description='Quarterly sales performance analysis'
)

# Add analysis results
section.analysis_session_id = 'session-456'
section.dataset_info = {'rows': 1000, 'columns': 15, 'source': 'sales_db'}
section.generated_plots = ['/plots/sales_trend.png', '/plots/regional_breakdown.png']
section.analysis_conclusions = 'Sales increased 15% YoY with strong performance in APAC region'
section.tags = ['sales', 'quarterly', 'performance']

# Serialize to dictionary for storage
data_dict = section.to_dict()
print(data_dict['status'])  # 'draft'

# Deserialize from dictionary
restored_section = DataSection.from_dict(data_dict)
print(restored_section.title)  # 'Sales Analysis Q4 2023'

Best Practices

  • Always provide required fields (id, owner, title) when instantiating to avoid errors
  • Use the from_dict() class method for deserialization rather than manual construction to ensure proper type conversions
  • Update the updated_at timestamp manually when modifying the section content
  • Store plot file paths as absolute paths or relative to a known base directory for portability
  • Use the status field to track workflow states (draft, review, published, etc.)
  • Link to DataAnalysisSession via analysis_session_id to maintain traceability of analysis work
  • Leverage the metadata dictionary for extensibility without modifying the class structure
  • Ensure ContentStatus enum is properly defined with all needed status values before using the class
  • When persisting to database, use to_dict() to get a JSON-serializable representation
  • The __post_init__ method automatically initializes mutable default values, preventing shared state issues

Similar Components

AI-powered semantic similarity - components with related functionality:

  • class DataAnalysisSession 81.3% similar

    A dataclass representing a data analysis session that is linked to a specific text section within a document, managing conversation messages, analysis results, plots, and configuration.

    From: /tf/active/vicechatdev/vice_ai/models.py
  • class DataAnalysisSession_v1 80.9% similar

    A dataclass representing a statistical analysis session that is linked to specific document sections, managing analysis state, messages, plots, and configuration.

    From: /tf/active/vicechatdev/vice_ai/models.py
  • class DataSectionService 76.3% similar

    Service class for managing DataSection entities, providing CRUD operations and specialized update methods for analysis sessions, plots, and conclusions.

    From: /tf/active/vicechatdev/vice_ai/services.py
  • class TextSection 72.3% similar

    A dataclass representing a text section entity with versioning, chat interface, data analysis capabilities, and metadata management.

    From: /tf/active/vicechatdev/vice_ai/models.py
  • class DocumentSection_v1 71.2% similar

    A dataclass representing a reference to a section (TextSection or DataSection) within a document structure, supporting hierarchical organization and section type differentiation.

    From: /tf/active/vicechatdev/vice_ai/models.py
← Back to Browse