class DataSection
A dataclass representing a dedicated data analysis section that stores analysis results, plots, dataset information, and conclusions separately from text content.
/tf/active/vicechatdev/vice_ai/models.py
425 - 499
moderate
Purpose
DataSection serves as a container for data analysis work within a larger document or project system. It manages the lifecycle of a data analysis section including versioning, status tracking, ownership, and storage of analysis artifacts like plots and conclusions. It provides serialization/deserialization capabilities for persistence and integrates with a DataAnalysisSession through a session ID reference.
Source Code
class DataSection:
"""Dedicated Data Analysis Section - separate from TextSection"""
id: str
owner: str # User email/ID
title: str
description: str = ""
# Content and versioning
current_content: str = "" # For summary/conclusions
status: ContentStatus = ContentStatus.DRAFT
# Timestamps
created_at: datetime = None
updated_at: datetime = None
# Data Analysis specific fields
analysis_session_id: str = None # Link to DataAnalysisSession
dataset_info: Dict[str, Any] = None # Dataset metadata
generated_plots: List[str] = None # Plot file paths
analysis_conclusions: str = "" # Final analysis conclusions
# Metadata
tags: List[str] = None
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.created_at is None:
self.created_at = datetime.now()
if self.updated_at is None:
self.updated_at = datetime.now()
if self.dataset_info is None:
self.dataset_info = {}
if self.generated_plots is None:
self.generated_plots = []
if self.tags is None:
self.tags = []
if self.metadata is None:
self.metadata = {}
def to_dict(self) -> Dict:
return {
'id': self.id,
'owner': self.owner,
'title': self.title,
'description': self.description,
'current_content': self.current_content,
'status': self.status.value,
'created_at': self.created_at.isoformat(),
'updated_at': self.updated_at.isoformat(),
'analysis_session_id': self.analysis_session_id,
'dataset_info': self.dataset_info,
'generated_plots': self.generated_plots,
'analysis_conclusions': self.analysis_conclusions,
'tags': self.tags,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict) -> 'DataSection':
return cls(
id=data['id'],
owner=data['owner'],
title=data['title'],
description=data.get('description', ''),
current_content=data.get('current_content', ''),
status=ContentStatus(data.get('status', ContentStatus.DRAFT.value)),
created_at=datetime.fromisoformat(data['created_at']),
updated_at=datetime.fromisoformat(data['updated_at']),
analysis_session_id=data.get('analysis_session_id'),
dataset_info=data.get('dataset_info', {}),
generated_plots=data.get('generated_plots', []),
analysis_conclusions=data.get('analysis_conclusions', ''),
tags=data.get('tags', []),
metadata=data.get('metadata', {})
)
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
bases |
- | - |
Parameter Details
id: Unique identifier string for the data section, typically a UUID or similar unique string
owner: User email or ID string identifying who owns/created this data section
title: Display title string for the data section
description: Optional detailed description string of the data section's purpose (defaults to empty string)
current_content: String containing summary or conclusions text (defaults to empty string)
status: ContentStatus enum value indicating the section's workflow state (defaults to ContentStatus.DRAFT)
created_at: datetime object marking when the section was created (auto-set to current time if None)
updated_at: datetime object marking last modification time (auto-set to current time if None)
analysis_session_id: Optional string linking to a DataAnalysisSession ID for tracking the analysis workflow
dataset_info: Dictionary containing metadata about the dataset being analyzed (defaults to empty dict)
generated_plots: List of strings containing file paths to generated plot images (defaults to empty list)
analysis_conclusions: String containing final analysis conclusions and findings (defaults to empty string)
tags: List of string tags for categorization and search (defaults to empty list)
metadata: Dictionary for storing arbitrary additional metadata (defaults to empty dict)
Return Value
Instantiation returns a DataSection object with all attributes initialized. The to_dict() method returns a dictionary representation with datetime objects converted to ISO format strings and enums converted to their values. The from_dict() class method returns a new DataSection instance reconstructed from a dictionary.
Class Interface
Methods
__post_init__(self) -> None
Purpose: Automatically called after dataclass __init__ to initialize default values for mutable fields and set timestamps
Returns: None - modifies instance attributes in place
to_dict(self) -> Dict
Purpose: Serializes the DataSection instance to a dictionary with proper type conversions for datetime and enum values
Returns: Dictionary containing all instance attributes with datetime objects converted to ISO format strings and ContentStatus enum converted to its string value
from_dict(cls, data: Dict) -> 'DataSection'
Purpose: Class method that deserializes a dictionary back into a DataSection instance with proper type conversions
Parameters:
data: Dictionary containing serialized DataSection data, typically from to_dict() output or database storage
Returns: New DataSection instance with all attributes properly typed and initialized from the dictionary data
Attributes
| Name | Type | Description | Scope |
|---|---|---|---|
id |
str | Unique identifier for the data section | instance |
owner |
str | User email or ID who owns this section | instance |
title |
str | Display title of the data section | instance |
description |
str | Detailed description of the section's purpose | instance |
current_content |
str | Summary or conclusions text content | instance |
status |
ContentStatus | Current workflow status of the section (draft, published, etc.) | instance |
created_at |
datetime | Timestamp when the section was created | instance |
updated_at |
datetime | Timestamp of last modification | instance |
analysis_session_id |
str | Reference ID linking to a DataAnalysisSession | instance |
dataset_info |
Dict[str, Any] | Metadata about the dataset being analyzed (rows, columns, source, etc.) | instance |
generated_plots |
List[str] | List of file paths to generated plot images | instance |
analysis_conclusions |
str | Final analysis conclusions and findings text | instance |
tags |
List[str] | List of tags for categorization and search | instance |
metadata |
Dict[str, Any] | Arbitrary additional metadata storage | instance |
Dependencies
datetimetypingdataclasses
Required Imports
from datetime import datetime
from typing import List, Dict, Any
from dataclasses import dataclass
Conditional/Optional Imports
These imports are only needed under specific conditions:
from enum import Enum
Condition: Required for ContentStatus enum which must be defined or imported separately
Required (conditional)Usage Example
from datetime import datetime
from typing import List, Dict, Any
from dataclasses import dataclass
from enum import Enum
class ContentStatus(Enum):
DRAFT = 'draft'
PUBLISHED = 'published'
@dataclass
class DataSection:
# ... (class definition as provided)
pass
# Create a new data section
section = DataSection(
id='section-123',
owner='user@example.com',
title='Sales Analysis Q4 2023',
description='Quarterly sales performance analysis'
)
# Add analysis results
section.analysis_session_id = 'session-456'
section.dataset_info = {'rows': 1000, 'columns': 15, 'source': 'sales_db'}
section.generated_plots = ['/plots/sales_trend.png', '/plots/regional_breakdown.png']
section.analysis_conclusions = 'Sales increased 15% YoY with strong performance in APAC region'
section.tags = ['sales', 'quarterly', 'performance']
# Serialize to dictionary for storage
data_dict = section.to_dict()
print(data_dict['status']) # 'draft'
# Deserialize from dictionary
restored_section = DataSection.from_dict(data_dict)
print(restored_section.title) # 'Sales Analysis Q4 2023'
Best Practices
- Always provide required fields (id, owner, title) when instantiating to avoid errors
- Use the from_dict() class method for deserialization rather than manual construction to ensure proper type conversions
- Update the updated_at timestamp manually when modifying the section content
- Store plot file paths as absolute paths or relative to a known base directory for portability
- Use the status field to track workflow states (draft, review, published, etc.)
- Link to DataAnalysisSession via analysis_session_id to maintain traceability of analysis work
- Leverage the metadata dictionary for extensibility without modifying the class structure
- Ensure ContentStatus enum is properly defined with all needed status values before using the class
- When persisting to database, use to_dict() to get a JSON-serializable representation
- The __post_init__ method automatically initializes mutable default values, preventing shared state issues
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
class DataAnalysisSession 81.3% similar
-
class DataAnalysisSession_v1 80.9% similar
-
class DataSectionService 76.3% similar
-
class TextSection 72.3% similar
-
class DocumentSection_v1 71.2% similar