🔍 Code Extractor

function calculate_correlations

Maturity: 45

Calculates both Pearson and Spearman correlation coefficients between Eimeria variables and performance variables, filtering out missing values and identifying statistically significant relationships.

File:
/tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
Lines:
147 - 185
Complexity:
moderate

Purpose

This function performs comprehensive correlation analysis between two sets of variables (Eimeria-related and performance-related metrics) in a dataset. It computes both parametric (Pearson) and non-parametric (Spearman) correlations to handle both normal and non-normal data distributions. The function identifies statistically significant correlations (p < 0.05), prints formatted results to console, and returns a structured DataFrame containing all correlation statistics. This is particularly useful for exploratory data analysis in biological or veterinary research examining relationships between parasitic infections (Eimeria) and performance outcomes.

Source Code

def calculate_correlations(df, eimeria_vars, performance_vars):
    """Calculate correlations between Eimeria and performance variables"""
    
    print("\n" + "="*80)
    print("OVERALL CORRELATION ANALYSIS")
    print("="*80)
    
    results = []
    
    for eimeria_var in eimeria_vars:
        for perf_var in performance_vars:
            # Remove missing values
            valid_data = df[[eimeria_var, perf_var]].dropna()
            
            if len(valid_data) > 3:
                # Pearson correlation
                pearson_r, pearson_p = pearsonr(valid_data[eimeria_var], 
                                               valid_data[perf_var])
                
                # Spearman correlation (for non-normal data)
                spearman_r, spearman_p = spearmanr(valid_data[eimeria_var], 
                                                   valid_data[perf_var])
                
                results.append({
                    'Eimeria_Variable': eimeria_var,
                    'Performance_Variable': perf_var,
                    'Pearson_r': pearson_r,
                    'Pearson_p': pearson_p,
                    'Spearman_r': spearman_r,
                    'Spearman_p': spearman_p,
                    'N': len(valid_data),
                    'Significant': 'Yes' if pearson_p < 0.05 else 'No'
                })
    
    results_df = pd.DataFrame(results)
    print("\nCorrelation Results:")
    print(results_df.to_string(index=False))
    
    return results_df

Parameters

Name Type Default Kind
df - - positional_or_keyword
eimeria_vars - - positional_or_keyword
performance_vars - - positional_or_keyword

Parameter Details

df: A pandas DataFrame containing the dataset with both Eimeria and performance variables as columns. Must include all columns specified in eimeria_vars and performance_vars parameters.

eimeria_vars: A list or iterable of column names (strings) from the DataFrame representing Eimeria-related variables (e.g., infection levels, oocyst counts). These will be correlated against performance variables.

performance_vars: A list or iterable of column names (strings) from the DataFrame representing performance metrics (e.g., weight gain, feed conversion ratio). These will be correlated with Eimeria variables.

Return Value

Returns a pandas DataFrame with the following columns: 'Eimeria_Variable' (name of Eimeria variable), 'Performance_Variable' (name of performance variable), 'Pearson_r' (Pearson correlation coefficient), 'Pearson_p' (Pearson p-value), 'Spearman_r' (Spearman correlation coefficient), 'Spearman_p' (Spearman p-value), 'N' (number of valid observations used), and 'Significant' (string 'Yes' or 'No' indicating if Pearson p-value < 0.05). Each row represents one pairwise correlation between an Eimeria variable and a performance variable.

Dependencies

  • pandas
  • scipy

Required Imports

import pandas as pd
from scipy.stats import pearsonr
from scipy.stats import spearmanr

Usage Example

import pandas as pd
from scipy.stats import pearsonr, spearmanr

# Create sample data
data = {
    'eimeria_count': [100, 200, 150, 300, 250, 180],
    'eimeria_severity': [1, 3, 2, 4, 3, 2],
    'weight_gain': [500, 450, 480, 400, 420, 470],
    'feed_efficiency': [1.8, 1.6, 1.7, 1.5, 1.55, 1.65]
}
df = pd.DataFrame(data)

# Define variable lists
eimeria_vars = ['eimeria_count', 'eimeria_severity']
performance_vars = ['weight_gain', 'feed_efficiency']

# Calculate correlations
results = calculate_correlations(df, eimeria_vars, performance_vars)

# Access results
print(results[results['Significant'] == 'Yes'])
print(f"\nMean Pearson correlation: {results['Pearson_r'].mean():.3f}")

Best Practices

  • Ensure the DataFrame contains sufficient non-missing data for meaningful correlations (function requires >3 valid observations per pair)
  • Variable names in eimeria_vars and performance_vars must exactly match column names in the DataFrame
  • The function uses a significance threshold of p < 0.05; consider adjusting this threshold for multiple comparison corrections (e.g., Bonferroni) when analyzing many variable pairs
  • Pearson correlation assumes linear relationships and normally distributed data; Spearman correlation is more robust to non-normal distributions and monotonic relationships
  • Review both Pearson and Spearman results as they may differ significantly for non-linear or non-normal data
  • The function prints results to console; redirect stdout if you need to suppress output
  • Missing values are handled via pairwise deletion (dropna), which may result in different sample sizes for different variable pairs

Similar Components

AI-powered semantic similarity - components with related functionality:

  • function grouped_correlation_analysis 83.0% similar

    Performs Pearson correlation analysis between Eimeria-related variables and performance variables, grouped by specified categorical variables (e.g., treatment, challenge groups).

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
  • function generate_conclusions 76.0% similar

    Generates and prints comprehensive statistical conclusions from correlation analysis between Eimeria infection variables and broiler performance measures, including overall and group-specific findings.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
  • function create_correlation_heatmap 75.9% similar

    Generates and saves a correlation heatmap visualizing the relationships between Eimeria infection indicators and performance measures from a pandas DataFrame.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
  • function main_v54 73.6% similar

    Performs comprehensive exploratory data analysis on a broiler chicken performance dataset, analyzing the correlation between Eimeria infection and performance measures (weight gain, feed conversion ratio, mortality rate) across different treatments and challenge regimens.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/343f5578-64e0-4101-84bd-5824b3c15deb/project_1/analysis.py
  • function main_v24 72.9% similar

    Orchestrates a complete correlation analysis pipeline for Eimeria infection and broiler performance data, from data loading through visualization and results export.

    From: /tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
← Back to Browse