function main_v25
Orchestrates a complete correlation analysis pipeline for Eimeria infection and broiler performance data, from data loading through visualization and results export.
/tf/active/vicechatdev/vice_ai/smartstat_scripts/5a059cb7-3903-4020-8519-14198d1f39c9/analysis_1.py
489 - 546
complex
Purpose
This is the main entry point function that coordinates a comprehensive statistical analysis workflow. It loads CSV data, identifies Eimeria infection variables and performance metrics, calculates correlations (both overall and grouped), generates visualizations (heatmaps, scatter plots), produces analytical conclusions, and exports results to multiple CSV and PNG files. Designed for veterinary/agricultural research analyzing the relationship between parasitic infection levels and poultry performance metrics.
Source Code
def main():
"""Main execution function"""
print("="*80)
print("EIMERIA INFECTION AND BROILER PERFORMANCE CORRELATION ANALYSIS")
print("="*80)
# Load data
df = load_data('data.csv')
# Explore data
categorical_vars, numerical_vars = explore_data(df)
# Identify variables
eimeria_vars, performance_vars, grouping_vars = identify_variables(df, numerical_vars)
if len(eimeria_vars) == 0 or len(performance_vars) == 0:
print("\nWARNING: Could not identify Eimeria or performance variables.")
print("Please ensure your dataset contains appropriate variable names.")
return
# Overall correlation analysis
overall_results = calculate_correlations(df, eimeria_vars, performance_vars)
# Grouped correlation analysis
grouped_results = pd.DataFrame()
if len(grouping_vars) > 0:
grouped_results = grouped_correlation_analysis(df, eimeria_vars,
performance_vars, grouping_vars)
# Create visualizations
print("\n" + "="*80)
print("CREATING VISUALIZATIONS")
print("="*80)
create_correlation_heatmap(df, eimeria_vars, performance_vars)
create_scatter_plots(df, eimeria_vars, performance_vars, grouping_vars)
if len(grouped_results) > 0:
create_grouped_correlation_plot(grouped_results)
# Generate conclusions
conclusions = generate_conclusions(overall_results, grouped_results,
eimeria_vars, performance_vars)
# Export results
export_results(overall_results, grouped_results, conclusions)
print("\n" + "="*80)
print("ANALYSIS COMPLETE")
print("="*80)
print("\nGenerated files:")
print(" - overall_correlations.csv")
print(" - grouped_correlations.csv")
print(" - significant_correlations.csv")
print(" - correlation_heatmap.png")
print(" - scatter plots (multiple)")
print(" - grouped_correlations.png")
Return Value
Returns None. The function produces side effects including console output, generated visualization files (PNG), and exported data files (CSV). If Eimeria or performance variables cannot be identified in the dataset, the function prints a warning and returns early without generating outputs.
Dependencies
pandasnumpymatplotlibseabornscipy
Required Imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import pearsonr
from scipy.stats import spearmanr
import warnings
Usage Example
# Ensure 'data.csv' exists in the current directory with appropriate columns
# The CSV should contain Eimeria-related columns (e.g., 'eimeria_count', 'oocyst_level')
# and performance columns (e.g., 'weight_gain', 'feed_conversion_ratio')
# Simply call the main function to run the entire analysis pipeline
main()
# Expected output:
# - Console output showing analysis progress
# - overall_correlations.csv: correlation coefficients for all data
# - grouped_correlations.csv: correlations by grouping variables
# - significant_correlations.csv: statistically significant correlations only
# - correlation_heatmap.png: visual heatmap of correlations
# - Multiple scatter plot PNG files
# - grouped_correlations.png: grouped correlation visualization
Best Practices
- Ensure the input CSV file 'data.csv' exists before calling this function
- Verify that column names in the dataset follow naming conventions that allow automatic identification of Eimeria and performance variables
- Ensure sufficient disk space and write permissions for output files
- Review console output for warnings about missing variable identification
- All helper functions (load_data, explore_data, etc.) must be properly defined in the same module
- Consider wrapping the function call in a try-except block to handle potential file I/O errors
- The function assumes a specific data structure and variable naming convention - review the identify_variables() function to understand expected column names
- Generated files will overwrite existing files with the same names in the current directory
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function main_v55 85.8% similar
-
function generate_conclusions 79.6% similar
-
function main_v54 73.3% similar
-
function grouped_correlation_analysis 73.1% similar
-
function calculate_correlations 72.9% similar