🔍 Code Extractor

function update_data_section

Maturity: 50

Flask API endpoint that updates an existing data section's metadata and content fields for authenticated users with ownership verification.

File:
/tf/active/vicechatdev/vice_ai/new_app.py
Lines:
4292 - 4323
Complexity:
moderate

Purpose

This endpoint allows authenticated users to modify their own data sections by updating the title, description, and analysis conclusions. It enforces ownership validation to ensure users can only update data sections they own, and synchronizes the analysis_conclusions field with current_content for consistency.

Source Code

def update_data_section(section_id):
    """Update a data section"""
    user_email = get_current_user()
    data = request.get_json()
    
    data_section = data_section_service.get_data_section(section_id)
    if not data_section or data_section.owner != user_email:
        return jsonify({'error': 'Data section not found or access denied'}), 404
    
    try:
        # Update fields if provided
        if 'title' in data:
            data_section.title = data['title']
        if 'description' in data:
            data_section.description = data['description']
        if 'analysis_conclusions' in data:
            data_section.analysis_conclusions = data['analysis_conclusions']
            data_section.current_content = data['analysis_conclusions']
        
        success = data_section_service.update_data_section(data_section)
        
        if success:
            return jsonify({
                'success': True,
                'section': data_section.to_dict()
            })
        else:
            return jsonify({'error': 'Failed to update data section'}), 500
            
    except Exception as e:
        logger.error(f"Error updating data section: {e}")
        return jsonify({'error': str(e)}), 500

Parameters

Name Type Default Kind
section_id - - positional_or_keyword

Parameter Details

section_id: String identifier (likely UUID) of the data section to update. Passed as a URL path parameter. Used to retrieve and identify the specific data section from the database.

Return Value

Returns a Flask JSON response. On success (200): {'success': True, 'section': <dict representation of updated data section>}. On not found/access denied (404): {'error': 'Data section not found or access denied'}. On server error (500): {'error': <error message string>}. The function also expects JSON request body with optional fields: 'title', 'description', 'analysis_conclusions'.

Dependencies

  • flask
  • logging

Required Imports

from flask import request, jsonify
import logging

Usage Example

# Client-side usage example (JavaScript fetch)
fetch('/api/data-sections/abc-123-def-456', {
  method: 'PUT',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer <token>'
  },
  body: JSON.stringify({
    title: 'Updated Analysis Title',
    description: 'New description for the data section',
    analysis_conclusions: 'Updated conclusions from analysis'
  })
})
.then(response => response.json())
.then(data => {
  if (data.success) {
    console.log('Updated section:', data.section);
  } else {
    console.error('Error:', data.error);
  }
});

# Server-side context (Flask app setup)
# app = Flask(__name__)
# data_section_service = DataSectionService()
# logger = logging.getLogger(__name__)
# @app.route('/api/data-sections/<section_id>', methods=['PUT'])
# @require_auth
# def update_data_section(section_id):
#     # function implementation

Best Practices

  • Always verify user ownership before allowing updates to prevent unauthorized access
  • Use try-except blocks to catch and log errors gracefully
  • Return appropriate HTTP status codes (404 for not found, 500 for server errors)
  • Validate that the data section exists before attempting updates
  • Only update fields that are explicitly provided in the request to allow partial updates
  • Synchronize related fields (analysis_conclusions and current_content) to maintain data consistency
  • Log errors with sufficient detail for debugging while returning sanitized error messages to clients
  • Ensure the require_auth decorator is properly implemented to protect the endpoint
  • Consider adding input validation for title, description, and analysis_conclusions fields
  • Use transactions if the data_section_service supports them to ensure atomic updates

Similar Components

AI-powered semantic similarity - components with related functionality:

  • function update_data_section_content 89.3% similar

    Flask API endpoint that updates the content of a data section, setting both current_content and analysis_conclusions fields to the provided content value.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function update_data_section_conclusions 87.3% similar

    Flask API endpoint that updates the conclusions/interpretations field for a specific data section, with authentication and ownership validation.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function api_update_section 81.0% similar

    REST API endpoint that updates an existing section within a document, allowing modification of title, content, type, and level properties with authentication and authorization checks.

    From: /tf/active/vicechatdev/vice_ai/complex_app.py
  • function update_text_section 80.8% similar

    Flask API endpoint that updates either the title or content of a text section, with ownership verification and version tracking.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function add_existing_data_section_to_document 79.2% similar

    Flask API endpoint that adds an existing data section to a document after verifying ownership and access permissions for both the document and data section.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
← Back to Browse