🔍 Code Extractor

function update_data_section_conclusions

Maturity: 49

Flask API endpoint that updates the conclusions/interpretations field for a specific data section, with authentication and ownership validation.

File:
/tf/active/vicechatdev/vice_ai/new_app.py
Lines:
4354 - 4382
Complexity:
moderate

Purpose

This endpoint allows authenticated users to update the analysis conclusions for a data section they own. It validates user ownership, updates both the analysis_conclusions and current_content fields, and returns success/error responses. Used in data analysis workflows where users need to document their interpretations of analyzed data.

Source Code

def update_data_section_conclusions(section_id):
    """Update the conclusions/interpretations for a data section"""
    user_email = get_current_user()
    
    data_section = data_section_service.get_data_section(section_id)
    if not data_section or data_section.owner != user_email:
        return jsonify({'error': 'Data section not found or access denied'}), 404
    
    try:
        data = request.get_json()
        conclusions = data.get('conclusions', '')
        
        # Update the analysis_conclusions field
        data_section.analysis_conclusions = conclusions
        data_section.current_content = conclusions  # Also update current_content
        
        success = data_section_service.update_data_section(data_section)
        
        if success:
            return jsonify({
                'success': True,
                'message': 'Conclusions updated successfully'
            })
        else:
            return jsonify({'error': 'Failed to update conclusions'}), 500
            
    except Exception as e:
        logger.error(f"Error updating data section conclusions: {e}")
        return jsonify({'error': str(e)}), 500

Parameters

Name Type Default Kind
section_id - - positional_or_keyword

Parameter Details

section_id: String identifier for the data section to update. Retrieved from the URL path parameter. Must correspond to an existing DataSection in the database that the authenticated user owns.

Return Value

Returns a Flask JSON response tuple. On success: (jsonify({'success': True, 'message': 'Conclusions updated successfully'}), 200). On not found/access denied: (jsonify({'error': 'Data section not found or access denied'}), 404). On failure: (jsonify({'error': 'Failed to update conclusions'}), 500) or (jsonify({'error': str(e)}), 500) for exceptions.

Dependencies

  • flask
  • logging

Required Imports

from flask import request, jsonify
import logging

Usage Example

# Client-side usage example (JavaScript fetch)
fetch('/api/data-sections/abc123/conclusions', {
  method: 'PUT',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer <token>'
  },
  body: JSON.stringify({
    conclusions: 'The data shows a significant correlation between variables X and Y, with p < 0.05.'
  })
})
.then(response => response.json())
.then(data => {
  if (data.success) {
    console.log('Conclusions updated successfully');
  } else {
    console.error('Error:', data.error);
  }
});

# Server-side context (how it's registered)
# @app.route('/api/data-sections/<section_id>/conclusions', methods=['PUT'])
# @require_auth
# def update_data_section_conclusions(section_id):
#     # Function implementation

Best Practices

  • Always ensure the user is authenticated before calling this endpoint (handled by @require_auth decorator)
  • Validate that the section_id exists and belongs to the authenticated user before allowing updates
  • Include proper error handling for database operations and return appropriate HTTP status codes
  • The function updates both analysis_conclusions and current_content fields - ensure this dual update is intentional for your use case
  • Log errors with sufficient context for debugging (section_id, user_email, error details)
  • Use transactions if your database supports them to ensure atomic updates of both fields
  • Consider adding input validation for the conclusions field (length limits, content sanitization)
  • The endpoint expects JSON payload with 'conclusions' key - document this requirement for API consumers
  • Return consistent error response format across all error cases for easier client-side handling

Similar Components

AI-powered semantic similarity - components with related functionality:

  • function update_analysis_conclusions 89.7% similar

    Flask API endpoint that updates the conclusions text for a specific data analysis session, with authentication and ownership validation.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function update_data_section 87.3% similar

    Flask API endpoint that updates an existing data section's metadata and content fields for authenticated users with ownership verification.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function update_data_section_content 84.1% similar

    Flask API endpoint that updates the content of a data section, setting both current_content and analysis_conclusions fields to the provided content value.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function save_data_section_analysis 75.5% similar

    Flask API endpoint that saves analysis results (plots, conclusions, and analysis data) from a data analysis session to a data section in the database.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function create_data_section_analysis_session 71.9% similar

    Flask API endpoint that creates or retrieves an analysis session for a specific data section, ensuring user ownership and linking the session to the data section.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
← Back to Browse