🔍 Code Extractor

function update_data_section_content

Maturity: 49

Flask API endpoint that updates the content of a data section, setting both current_content and analysis_conclusions fields to the provided content value.

File:
/tf/active/vicechatdev/vice_ai/new_app.py
Lines:
4386 - 4414
Complexity:
moderate

Purpose

This endpoint allows authenticated users to update the content of their data sections from the document view. It validates ownership, updates both the current_content and analysis_conclusions fields with the same content, and returns success/error responses. This is typically used when users edit data section content directly in the document interface.

Source Code

def update_data_section_content(section_id):
    """Update the content for a data section (from document view)"""
    user_email = get_current_user()
    
    data_section = data_section_service.get_data_section(section_id)
    if not data_section or data_section.owner != user_email:
        return jsonify({'error': 'Data section not found or access denied'}), 404
    
    try:
        data = request.get_json()
        content = data.get('content', '')
        
        # Update both current_content and analysis_conclusions
        data_section.current_content = content
        data_section.analysis_conclusions = content
        
        success = data_section_service.update_data_section(data_section)
        
        if success:
            return jsonify({
                'success': True,
                'message': 'Content updated successfully'
            })
        else:
            return jsonify({'error': 'Failed to update content'}), 500
            
    except Exception as e:
        logger.error(f"Error updating conclusions: {e}")
        return jsonify({'error': str(e)}), 500

Parameters

Name Type Default Kind
section_id - - positional_or_keyword

Parameter Details

section_id: String identifier for the data section to be updated. This is passed as a URL path parameter. Must correspond to an existing DataSection in the database that belongs to the authenticated user.

Return Value

Returns a Flask JSON response tuple. On success: ({'success': True, 'message': 'Content updated successfully'}, 200). On not found/access denied: ({'error': 'Data section not found or access denied'}, 404). On failure: ({'error': 'Failed to update content'}, 500) or ({'error': <error_message>}, 500) if an exception occurs.

Dependencies

  • flask
  • logging

Required Imports

from flask import request, jsonify
import logging

Usage Example

# Client-side usage example (JavaScript fetch)
fetch('/api/data-sections/abc123/content', {
  method: 'PUT',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer <token>'
  },
  body: JSON.stringify({
    content: 'Updated analysis conclusions text here'
  })
})
.then(response => response.json())
.then(data => {
  if (data.success) {
    console.log('Content updated successfully');
  } else {
    console.error('Error:', data.error);
  }
});

# Server-side context (Flask app setup)
# app = Flask(__name__)
# data_section_service = DataSectionService()
# logger = logging.getLogger(__name__)
# The function is automatically called when PUT request is made to the route

Best Practices

  • Always verify user ownership before allowing updates to prevent unauthorized access
  • The function updates both current_content and analysis_conclusions to the same value - ensure this is the intended behavior for your use case
  • Implement proper error logging to track update failures
  • Ensure the require_auth decorator is properly configured to validate user sessions
  • Consider adding input validation for the content field (e.g., length limits, sanitization)
  • The function returns 404 for both 'not found' and 'access denied' cases - consider separating these for better error handling
  • Wrap database operations in try-except blocks to handle potential database errors gracefully
  • Consider adding rate limiting to prevent abuse of the update endpoint
  • Validate that section_id is a valid format before querying the database

Similar Components

AI-powered semantic similarity - components with related functionality:

  • function update_data_section 89.3% similar

    Flask API endpoint that updates an existing data section's metadata and content fields for authenticated users with ownership verification.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function update_data_section_conclusions 84.1% similar

    Flask API endpoint that updates the conclusions/interpretations field for a specific data section, with authentication and ownership validation.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function api_update_section 81.4% similar

    REST API endpoint that updates an existing section within a document, allowing modification of title, content, type, and level properties with authentication and authorization checks.

    From: /tf/active/vicechatdev/vice_ai/complex_app.py
  • function update_text_section 80.7% similar

    Flask API endpoint that updates either the title or content of a text section, with ownership verification and version tracking.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
  • function add_data_section_to_document 77.7% similar

    Flask API endpoint that adds a data section to a document, either by creating a new data section or linking an existing one, with ownership verification.

    From: /tf/active/vicechatdev/vice_ai/new_app.py
← Back to Browse